Что можно сказать о сторонах прямоугольника. Какой четырёхугольник называется прямоугольником

Урок по теме « Прямоугольник и его свойства»

Цели урока:

Повторить понятие прямоугольника, опираясь на полученные знания учащихся в курсе математики 1 – 6 классов.

Рассмотреть свойства прямоугольника как частного вида параллелограмма.

Рассмотреть частное свойство прямоугольника.

Показать применение свойств к решению задач.

Ход урока .

I O рганизационный момент.

Сообщить цель урока, тему урока.

II Изучение нового материала .

    Повторить:

1. Какая фигура называется параллелограммом?

2. Какими свойствами обладает параллелограмм?

Ввести понятие прямоугольника.

Какой параллелограмм можно назвать прямоугольником?

Определение: Прямоугольником называется параллелограмм, у которого все углы прямые. (слайд 3)

Значит, раз прямоугольник – это параллелограмм, то он обладает всеми свойствами параллелограмма. Раз у прямоугольника другое название, то должно быть своё свойство (слайд 4).

Задание для учащихся (самостоятельно): исследуйте стороны, углы и диагонали параллелограмма и прямоугольника, записав результаты в таблицу.

Параллелограмм

Прямоугольник

Стороны

Углы

Диагонали

Сделать вывод: диагонали прямоугольника равны.

Этот вывод и является частным свойством прямоугольника:

Теорема. Диагонали прямоугольника равны.

Дано : АВСD – прямоугольник,

АС и BD диагонали.

Доказать : АС = BD


Доказательство:

1) Рассмотрим ∆ АСD и ∆ АВD :

а)
АD С =
D АВ = 90°,

б) А D – общая,

в) АВ = СD – противоположные стороны прямоугольника,

следовательно треугольники равны по двум катетам.

2)Так как треугольники равны, то АС = ВD .

Рассмотрим свойства прямоугольника, зная, что он является параллелограммом.

Свойство 1: сумма углов прямоугольника равна 360°.

Доказательство : а) так как у прямоугольника четыре угла по 90°, то их сумма равна 360°.

б) так как прямоугольник – это четырехугольник, то сумма углов четырехугольника равна (n – 2) ∙180° = (4 – 2) ∙180° = 2∙180° = 360°.

Свойство 2: противоположные стороны прямоугольника равны.

Доказательство : а) так как прямоугольник – это параллелограмм, а у параллелограмма противоположные стороны равны, то и у прямоугольника противоположные стороны тоже будут равными.

Как еще можно доказать этот факт?

б) если провести диагональ АС, то из равенства прямоугольных треугольников АВС и С D А (по гипотенузе и острому углу) будет следовать равенство противоположных сторон прямоугольника.

Свойство 3: диагонали прямоугольника пересекаются и точкой пересечения делятся пополам.

Доказательство : а) так как прямоугольник – это параллелограмм, а у параллелограмма диагонали пересекаются и точкой пересечения делятся пополам, то и у прямоугольника диагонали пересекаются и точкой пересечения делятся пополам.

Существует ли ещё одно доказательство этого свойства?

б) Да, через равенство треугольников АОВ и D ОС (по стороне и двум прилежащим к ней углам)

Свойство 4: биссектриса угла прямоугольника отсекает от него равнобедренный треугольник.

Доказательство: а) так как прямоугольник – это параллелограмм, а у параллелограмма биссектриса острого угла отсекает от него равнобедренный треугольник, то и у прямоугольника биссектриса любого угла отсекает от него равнобедренный треугольник.

Можно ли ещё каким либо другим способом доказать это свойство?

б) Можно. Рассмотрим прямоугольный треугольник АВК и докажем равенство углов ВАК и ВКА. Тогда можно сделать вывод о равенстве сторон АВ и ВК.

Все свойства доказываются, используя свойства параллелограмма.

    Получили, что прямоугольник обладает пятью свойствами:

III Закрепление изученного материала.

Задания классу: 1. Найди периметр прямоугольника (устно)

а)б)

Решение:

а) Р = (6+4)∙2, Р= 20(дм) (противоположные стороны прямоугольника равны)

б) т.к. диагонали прямоугольника равны, то ∆ M ОK и ∆ M ОN равнобедренные, ОВ и ОА являются медианами, следовательно они являются и высотами. Тогда 2ВО = MN = 8, 2АО = МK = 4.

Р = (8 + 4)∙2, Р = 24(дм)


2. Найди стороны прямоугольника, зная, что его периметр равен 24 см.

Решение: 1) ∆АВМ – равнобедренный, так как АМ – биссектриса,

значит АВ = ВМ.

2) 24 = (АВ + ВМ + МС) ∙2,

12 = АВ + ВМ + МС,

12 = ВМ + ВМ +МС,

12 = МС + 2∙ВМ.

3)

3 МВ = 9, МВ = 3, МС = 6

4) АВ = СD = 3, AD = BC = 3 +6 = 9

Ответ: 3 см, 9 см, 3 см, 9 см.

403 (учебник)

Дано: АВСО - прямоугольник, D = 30°,

значит СD = 0,5АС = 6 см.

2) АВ = СD = 6 см.

3) В прямоугольнике диагонали равны и точкой пересечения делятся пополам, т. е. АО = ВО = 6 см.

4) Р(аов) = АО + ВО + АВ = 6 +6+ 6 = 18см.

Ответ: 18 см.

IV Подведение итогов урока.

Прямоугольник обладает следующими свойствами:

1. Сумма углов прямоугольника равна 360°.

2. Противоположные стороны прямоугольника равны.

3. Диагонали прямоугольника пересекаются и точкой пересечения делятся пополам.

4. Биссектриса угла прямоугольника отсекает от него равнобедренный треугольник.

5. Диагонали прямоугольника равны.

V Домашнее задание.

П. 45, вопросы 12,13. №399, 401 а), 404

Дома самостоятельно рассмотреть признак прямоугольника.

И снова вопрос: ромб - это параллелограмм или нет?

С полным правом - параллелограмм , потому что у него и (вспоминаем наш признак 2 ).

И снова, раз ромб - параллелограмм , то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Свойства ромба

Посмотри на картинку:

Как и в случае с прямоугольником, свойства эти - отличительные , то есть по каждому из этих свойств можно заключить, что перед нами не просто параллелограмм , а именно ромб.

Признаки ромба

И снова обрати внимание : должен быть не просто четырехугольник, у которого перпендикулярны диагонали, а именно параллелограмм . Убедись:

Нет, конечно, хотя его диагонали и перпендикулярны, а диагональ - биссектриса углов и. Но … диагонали не делятся, точкой пересечения пополам, поэтому - НЕ параллелограмм , а значит, и НЕ ромб .

То есть квадрат - это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Понятно почему? - ромб - биссектриса угла A, который равен. Значит делит (да и тоже) на два угла по.

Ну, это совсем ясно: прямоугольник диагонали равны; ромб диагонали перпендикулярны, и вообще - параллелограмм диагонали делятся точкой пересечения пополам.

СРЕДНИЙ УРОВЕНЬ

Свойства четырехугольников. Параллелограмм

Свойства параллелограмма

Внимание! Слова «свойства параллелограмма » означают, что если у тебя в задаче есть параллелограмм, то всем нижеследующим можно пользоваться.

Теорема о свойствах параллелограмма.

В любом параллелограмме:

Давай-ка поймём, почему это всё верно, иными словами ДОКАЖЕМ теорему.

Итак, почему верно 1)?

Раз - параллелограмм, то:

  • как накрест лежащие
  • как накрест лежащие.

Значит, (по II признаку: и - общая.)

Ну вот, а раз, то и - всё! - доказали.

Но кстати! Мы ещё доказали при этом и 2)!

Почему? Но ведь (смотри на картинку), то есть, а именно потому, что.

Осталось только 3).

Для этого всё-таки придётся провести вторую диагональ.

И теперь видим, что - по II признаку (угла и сторона «между» ними).

Свойства доказали! Перейдём к признакам.

Признаки параллелограмма

Напомним, что признак параллелограмма отвечает на вопрос "как узнать?", что фигура является параллелограммом.

В значках это так:

Почему? Хорошо бы понять, почему - этого хватит. Но смотри:

Ну вот и разобрались, почему признак 1 верен.

Ну, это ещё легче! Снова проведём диагональ.

А значит:

И тоже несложно. Но …по-другому!

Значит, . Ух! Но и - внутренние односторонние при секущей!

Поэтому тот факт, что означает, что.

А если посмотришь с другой стороны, то и - внутренние односторонние при секущей! И поэтому.

Видишь, как здорово?!

И опять просто:

Точно так же, и.

Обрати внимание: если ты нашел хотя бы один признак параллелограмма в своей задаче, то у тебя точно параллелограмм, и ты можешь пользоваться всеми свойствами параллелограмма.

Для полной ясности посмотри на схему:


Свойства четырехугольников. Прямоугольник.

Свойства прямоугольника:

Пункт 1) совсем очевидный - ведь просто выполнен признак 3 ()

А пункт 2) - очень важный . Итак, докажем, что

А значит, по двум катетам (и - общий).

Ну вот, раз треугольники и равны, то у них и гипотенузы и тоже равны.

Доказали, что!

И представь себе, равенство диагоналей - отличительное свойство именно прямоугольника среди всех параллелограммов. То есть верно такое утверждение^

Давай поймём, почему?

Значит, (имеются в виду углы параллелограмма). Но ещё раз вспомним, что - параллелограмм, и поэтому.

Значит, . Ну и, конечно, из этого следует, что каждый из них по! Ведь в сумме-то они должны давать!

Вот и доказали, что если у параллелограмма вдруг (!) окажутся равные диагонали, то это точно прямоугольник .

Но! Обрати внимание! Речь идёт о параллелограммах ! Не любой четырехугольник с равными диагоналями - прямоугольник, а только параллелограмм!

Свойства четырехугольников. Ромб

И снова вопрос: ромб - это параллелограмм или нет?

С полным правом - параллелограмм, потому что у него и (Вспоминаем наш признак 2).

И снова, раз ромб - параллелограмм, то он обязан обладать всеми свойствами параллелограмма. Это означает, что у ромба противоположные углы равны, противоположные стороны параллельны, а диагонали делятся точкой пересечения пополам.

Но есть и особенные свойства. Формулируем.

Свойства ромба

Почему? Ну, раз ромб - это параллелограмм, то его диагонали делятся пополам.

Почему? Да, потому же!

Иными словами, диагонали и оказались биссектрисами углов ромба.

Как в случае с прямоугольником, свойства эти - отличительные , каждые из них является ещё и признаком ромба.

Признаки ромба.

А это почему? А посмотри,

Значит, и оба этих треугольника - равнобедренные.

Чтобы быть ромбом, четырёхугольник сперва должен «стать» параллелограммом, а потом уже демонстрировать признак 1 или признак 2.

Свойства четырехугольников. Квадрат

То есть квадрат - это прямоугольник и ромб одновременно. Давай посмотрим, что из этого получится.

Понятно, почему? Квадрат - ромб - биссектриса угла, который равен. Значит делит (да и тоже) на два угла по.

Ну, это совсем ясно: прямоугольник диагонали равны; ромб диагонали перпендикулярны, и вообще - параллелограмм диагонали делятся точкой пересечения пополам.

Почему? Ну, просто применим теорему Пифагора к.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Свойства параллелограмма:

  1. Противоположные стороны равны: , .
  2. Противоположные углы равны: , .
  3. Углы при одной стороне составляют в сумме: , .
  4. Диагонали делятся точкой пересечения пополам: .

Свойства прямоугольника:

  1. Диагонали прямоугольника равны: .
  2. Прямоугольник - параллелограмм (для прямоугольника выполняются все свойства параллелограмма).

Свойства ромба:

  1. Диагонали ромба перпендикулярны: .
  2. Диагонали ромба являются биссектрисами его углов: ; ; ; .
  3. Ромб - параллелограмм (для ромба выполняются все свойства параллелограмма).

Свойства квадрата:

Квадрат - ромб и прямоугольник одновременно, следовательно для квадрата выполняются все свойства прямоугольника и ромба. А так же.

Прямоугольник - параллелограмм, у которого все углы прямые (равны 90 градусам). Площадь прямоугольника равна произведению его смежных сторон. Диагонали прямоугольника равны. Вторая формула нахождения площади прямоугольника исходит из формулы площади четырехугольника через диагонали.

Прямоугольник - это четырехугольник, у которого каждый угол является прямым.

Квадрат - это частный случай прямоугольника.

Прямоугольник имеет две пары равных сторон. Длина наиболее длинных пар сторон называется длиной прямоугольника , а длина наиболее коротких - шириной прямоугольника .

Свойства прямоугольника

1. Прямоугольник - это параллелограмм

Свойство объясняется действием признака 3 параллелограмма (то есть \(\angle A = \angle C \) , \(\angle B = \angle D \) )

2. Противоположные стороны равны

\(AB = CD,\enspace BC = AD \)

3. Противоположные стороны параллельны

\(AB \parallel CD,\enspace BC \parallel AD \)

4. Прилегающие стороны перпендикулярны друг другу

\(AB \perp BC,\enspace BC \perp CD,\enspace CD \perp AD,\enspace AD \perp AB \)

5. Диагонали прямоугольника равны

\(AC = BD \)

Согласно свойству 1 прямоугольник является параллелограммом, а значит \(AB = CD \) .

Следовательно, \(\triangle ABD = \triangle DCA \) по двум катетам (\(AB = CD \) и \(AD \) - совместный).

Если обе фигуры - \(ABC \) и \(DCA \) тождественны, то и их гипотенузы \(BD \) и \(AC \) тоже тождественны.

Значит, \(AC = BD \) .

Только у прямоугольника из всех фигур (только из параллелограммов!) равны диагонали.

Докажем и это.

\(\Rightarrow AB = CD \) , \(AC = BD \) по условию. \(\Rightarrow \triangle ABD = \triangle DCA \) уже по трем сторонам.

Получается, что \(\angle A = \angle D \) (как углы параллелограмма). И \(\angle A = \angle C \) , \(\angle B = \angle D \) .

Выводим, что \(\angle A = \angle B = \angle C = \angle D \) . Все они по \(90^{\circ} \) . В сумме - \(360^{\circ} \) .

7. Диагональ делит прямоугольник на два одинаковых прямоугольных треугольника

\(\triangle ABC = \triangle ACD, \enspace \triangle ABD = \triangle BCD \)

8. Точка пересечения диагоналей делит их пополам

\(AO = BO = CO = DO \)

9. Точка пересечения диагоналей является центром прямоугольника и описанной окружности

В школьной программе на уроках геометрии приходится иметь дело с разнообразными видами четырёхугольников: ромбами, параллелограммами, прямоугольниками, трапециями, квадратами. Самыми первыми фигурами для изучения становятся прямоугольник и квадрат.

Итак, что же такое прямоугольник? Определение для 2 класса общеобразовательной школы будет выглядеть так: это четырёхугольник, у которого все четыре угла прямые. Несложно представить себе, как выглядит прямоугольник: это фигура с 4 прямыми углами и сторонами, попарно параллельными друг другу.

Вконтакте

Как понять, решая очередную геометрическую задачу, с каким именно четырёхугольником мы имеем дело? Существуют три основных признака , по которым можно безошибочно определить, что речь идёт именно о прямоугольнике. Назовём их:

  • фигура является четырёхугольником, три угла которого равны 90°;
  • представленный четырёхугольник - это параллелограмм с равными диагоналями;
  • параллелограмм, который имеет по крайней мере один прямой угол.

Интересно знать: что такое выпуклый , его особенности и признаки.

Поскольку прямоугольник - это параллелограмм (т. е. четырёхугольник с попарно параллельными противоположными сторонами), то для него будут выполняться все его свойства и признаки.

Формулы для вычисления длины сторон

В прямоугольнике противолежащие стороны равны и взаимно параллельны. Более длинную сторону принято называть длиной (обозначается a), более короткую - шириной (обозначается b). В прямоугольнике на изображении длинами являются стороны AB и CD, а шириной - AC и B. D. Также они перпендикулярны к основаниям (т. е. являются высотами).

Для нахождения сторон можно воспользоваться формулами, указанными ниже. В них приняты условные обозначения: a - длина прямоугольника, b - его ширина, d - диагональ (отрезок, соединяющий вершины двух углов, лежащих друг напротив друга), S - площадь фигуры, P - периметр, α — угол между диагональю и длиной, β — острый угол, который образован обеими диагоналями. Способы нахождения длин сторон:

  • С использованием диагонали и известной стороны: a = √(d ² — b ²), b = √(d ² — a ²).
  • По площади фигуры и одной из её сторон: a = S / b, b = S / a.
  • При помощи периметра и известной стороны: a = (P - 2 b) / 2, b = (P - 2 a) / 2.
  • Через диагональ и угол между ней и длиной: a = d sinα, b = d cosα.
  • Через диагональ и угол β: a = d sin 0,5 β, b = d cos 0,5 β.

Периметр и площадь

Периметром четырёхугольника называют сумму длин всех его сторон. Чтобы вычислить периметр, могут использоваться следующие формулы:

  • Через обе стороны: P = 2 (a + b).
  • Через площадь и одну из сторон: P = (2S + 2a ²) / a, P = (2S + 2b ²) / b.

Площадь - это пространство, ограниченное периметром . Три основных способа для расчёта площади:

  • Через длины обеих сторон: S = a*b.
  • При помощи периметра и какой-либо одной известной стороны: S = (Pa - 2 a ²) / 2; S = (Pb - 2 b ²) / 2.
  • По диагонали и углу β: S = 0,5 d ² sinβ.

В задачах школьного курса математики часто требуется хорошо владеть свойствами диагоналей прямоугольника . Перечислим основные из них:

  1. Диагонали равны друг другу и делятся на два равных отрезка в точке их пересечения.
  2. Диагональ определяется как корень суммы обеих сторон, возведённых в квадрат (следует из теоремы Пифагора).
  3. Диагональ разделяет прямоугольник на два треугольника с прямым углом.
  4. Точка пересечения совпадает с центром описанной окружности, а сами диагонали - с её диаметром.

Применяются следующие формулы для расчёта длины диагонали:

  • С использованием длины и ширины фигуры: d = √(a ² + b ²).
  • С использованием радиуса окружности, описанной вокруг четырёхугольника: d = 2 R.

Определение и свойства квадрата

Квадрат - это частный случай ромба, параллелограмма или прямоугольника. Его отличие от этих фигур заключается в том, что все его углы прямые, и все четыре стороны равны. Квадрат - это правильный четырёхугольник.

Четырёхугольник называют квадратом в следующих случаях:

  1. Если это прямоугольник, у которого длина a и ширина b равны.
  2. Если это ромб с равными длинами диагоналей и с четырьмя прямыми углами.

К свойствам квадрата относятся все ранее рассмотренные свойства, относящиеся к прямоугольнику, а также следующие:

  1. Диагонали перпендикулярны относительно друг друга (свойство ромба).
  2. Точка пересечения совпадает с центром вписанной окружности.
  3. Обе диагонали делят четырёхугольник на четыре одинаковых прямоугольных и равнобедренных треугольника.

Приведём часто используемые формулы для вычисления периметра, площади и элементов квадрата:

  • Диагональ d = a √2.
  • Периметр P = 4 a.
  • Площадь S = a ².
  • Радиус описанной окружности вдвое меньше диагонали: R = 0,5 a √2.
  • Радиус вписанной окружности определяется как половинная длина стороны: r = a / 2.

Примеры вопросов и задач

Разберём некоторые вопросы, с которыми можно столкнуться при изучении курса математики в школе, и решим несколько простых задач.

Задача 1 . Как изменится площадь прямоугольника, если увеличить длину его сторон в три раза?

Решение: Обозначим площадь исходной фигуры S0, а площадь четырёхугольника с утроенной длиной сторон - S1. По формуле, рассмотренной ранее, получаем: S0 = ab. Теперь увеличим длину и ширину в 3 раза и запишем: S1= 3 a 3 b = 9 ab. Сравнивая S0 и S1, становится очевидно, что вторая площадь больше первой в 9 раз.

Вопрос 1. Четырёхугольник с прямыми углами - это квадрат?

Решение: Из определения следует, что фигура с прямыми углами является квадратом лишь тогда, когда длины всех его сторон равны. В остальных случаях фигура является прямоугольником.

Задача 2 . Диагонали прямоугольника образуют угол 60 градусов. Ширина прямоугольника - 8. Рассчитать, чему равна диагональ.

Решение: Вспомним, что диагонали точкой пересечения разделяются пополам. Таким образом, имеем дело с равнобедренным треугольником с углом при вершине, равным 60°. Так как треугольник равнобедренный, то находящиеся при основании углы тоже будут одинаковы. Путём несложных вычислений получаем, что каждый из них равен 60°. Отсюда следует, что треугольник равносторонний. Ширина, известная нам, является основанием треугольника, следовательно, половина диагонали тоже равна 8, а длина целой диагонали в два раза больше и равна 16.

Вопрос 2. У прямоугольника все стороны равны или нет?

Решение: Достаточно вспомнить, что все стороны должны быть равны у квадрата, который является частным случаем прямоугольника. Во всех остальных случаях достаточное условие - это наличие минимум 3 прямых углов. Равенство сторон не является обязательным признаком.

Задача 3 . Площадь квадрата известна и равна 289. Найти радиусы вписанной и описанной окружности.

Решение: По формулам для квадрата проведём следующие расчёты:

  • Определим, чему равны основные элементы квадрата: a = √ S = √289 = 17; d = a √2 =1 7√2.
  • Подсчитаем, чему равен радиус описанной вокруг четырёхугольника окружности: R = 0,5 d = 8,5√2.
  • Найдём радиус вписанной окружности: r = a / 2 = 17 / 2 = 8,5.



Поделитесь с друзьями или сохраните для себя:

Загрузка...