Круговорот веществ и превращение энергии в экосистеме. Биосфера

Круговорот веществ и превращение энергии - основа существования биосферы

Существование биосферы связано с деятельностью живых организмов, сопровождающейся извлечением из окружающей среды энергии и минеральных веществ. После смерти организмов составляющие их химические элементы возвращаются в окружающую среду. Так возникает биогенный круговорот веществ в природе, т.е. циркуляция веществ между литосферой, атмосферой, гидросферой и живыми организмами. Химические элементы, входящие в состав живого, обычно циркулируют в биосфере по характерным путям: из внешней среды в организмы и опять во внешнюю среду. Для биогенной миграции свойственно накопление химических элементов в организмах (аккумуляция) и их высвобождение в результате минерализации отмершей биомассы (детрита). Такие пути циркуляции химических веществ (в большей или меньшей степени замкнутые), протекающие с использованием солнечной энергии через растительные и животные организмы, называют биогеохимическими круговоротами.

В энергетическом отношении жизнь в биосфере поддерживается постоянным притоком энергии от Солнца и использованием ее в процессах фотосинтеза. Связанная в органических веществах энергия по ступеням пищевой цепи уменьшается, потому что большая ее часть поступает в окружающую среду в виде тепла или же тратится на осуществление процессов, происходящих в организмах. В конечном итоге вся поглощенная организмами в виде химических связей солнечная энергия снова возвращается в пространство в виде теплового излучения, поэтому в биосфере наблюдается поток энергии. Таким образом, биосфера может быть устойчивой только при условии постоянного круговорота веществ и притока солнечной энергии.

Круговорот воды. Для наземных биогеоценозов большое значение имеет доступность пресной воды. Из всего запаса воды на Земле (1300 млн км 3) пресная вода составляет всего около 3%. Вода в виде водяного пара испаряется с поверхности морей и океанов и переносится воздушными потоками на различные расстояния. Основная масса ее находится в виде льда (75%), в атмосфере циркулирует только 0,35%. Большая часть атмосферных осадков задерживается растительностью и в почву попадает только 25-35%. Испарение со свободной поверхности и испарение растительными тканями возвращают воду в атмосферу.

Круговорот углерода. Углерод, содержащийся в атмосфере в виде С0 2 , является одним из исходных компонентов для фотосинтеза растений и цианобактерий, затем вместе с органическим веществом потребляется гетеротрофными организмами. При дыхании растений и животных, а также редуцентами в виде С0 2 углерод возвращается в атмосферу. Еще одним потребителем углерода являются морские организмы. Они используют соединения углерода для построения раковин, скелетных образований. В дальнейшем остатки отмерших морских организмов образуют на дне морей и океанов мощные отложения известняков. Цикл круговорота углерода замкнут не полностью. Углерод может выходить из него на довольно длительный срок в виде залежей каменного угля, известняков, торфа, гумуса и др. Человек нарушает отрегулированный круговорот углерода в ходе интенсивной хозяйственной деятельности. За счет сжигания огромного количества ископаемого топлива содержание углекислого газа в атмосфере за XX в. возросло на 25%. Последствием этого может стать усиление парникового эффекта.

Круговорот азота. Основные запасы азота сосредоточены в атмосфере в форме молекулярного азота, недоступного для растений, так как они способны использовать его только в виде неорганических соединений. К прямой фиксации атмосферного молекулярного азота способны лишь некоторые прокариотические организмы: бактерии и цианобактерии. Наиболее активными азотфиксаторами являются клубеньковые бактерии, поселяющиеся в клетках корней бобовых растений. Они переводят молекулярный азот в соединения, усваиваемые растениями. После отмирания растений и разложения клубеньков почва обогащается органическими и минеральными формами азота. Значительную роль в обогащении водной среды азотистыми соединениями играют цианобактерии. Небольшое количество азотистых соединений образуется в атмосфере во время гроз. Вместе с дождевыми водами они поступают в водную или почвенную среду. Небольшая часть азотистых соединений поступает при извержениях вулканов. Азот - необходимый компонент важнейших органических соединений: белков, нуклеиновых кислот, АТФ и др. Азотсодержащие органические вещества отмерших растений и животных, а также мочевина и мочевая кислота, выделяемые животными и грибами, расщепляются гнилостными бактериями до аммиака. Основная масса образующегося аммиака окисляется нитрифицирующими бактериями до нитритов и нитратов, после чего вновь используется растениями. Некоторая часть аммиака уходит в атмосферу и вместе с углекислым газом и другими газообразными веществами выполняет функцию удержания тепла планеты. Различные формы азотистых соединений почвы и водной среды могут восстанавливаться некоторыми видами бактерий до оксидов и молекулярного азота. Этот процесс называется денитрификацией. Его результатом является обеднение почвы и воды соединениями азота и насыщение атмосферы молекулярным азотом. Процессы нитрификации и денитрификации были полностью сбалансированы вплоть до периода интенсивного использования человеком азотных минеральных удобрений в целях получения больших урожаев сельскохозяйственных растений.

Круговорот фосфора. Фосфор находится в горных породах, подвергающихся эрозии и высвобождающих в экосистемы фосфаты. Большая их часть попадает в море и частично вновь может быть возвращена на сушу через морские пищевые цепи, заканчивающиеся рыбоядными птицами (образование гуано). Усвоение фосфора растениями зависит от кислотности почвенного раствора: по мере повышения кислотности практически нерастворимые в воде фосфаты превращаются в хорошо растворимую фосфорную кислоту.

От того, насколько регулярно осуществляется круговорот того или иного биогенного элемента, зависит продуктивность биогеоценоза, что имеет большое значение для сельскохозяйственного производства и лесного хозяйства. Сбалансированность биологического круговорота, т.е. его уравновешенность, следовательно, и устойчивость экосистемы определяются максимально возможным числом связей между видами в пищевой сети.

В биоценозах все популяции видов связаны друг с другом сложной пищевой сетью. Солнечная энергия поступает в организмы животных из растений, которые черпают запасы вещества и энергии из неживой природы. В итоге любой биоценоз представляет некое единство со своим биотопом, создавая целостную систему, которую называют экосистемой . Организованная в экосистемы жизнь на Земле продолжается уже миллионы лет, не прерываясь. Экосистемы бывают разных масштабов, наземные и водные: пруд с его обитателями, озеро, море, океан, небольшой лес, целая тайга, степь, пустыня – все это природные экосистемы. Аквариум, сад, пшеничное поле – экосистемы, созданные человеком.

Наземные экосистемы, связанные с участками однородной растительности, называют биогеоценозами . Таковы, например, ельник кисличный, ельник зеленомошный, березняк разнотравный, сфагновое болото, луг, ковыльная степь и т.п.

В названии "биогеоценоз" подчеркивается тесная взаимосвязь ("ценоз") живых ("био–") и неживых ("гео–") компонентов на определенном участке земной поверхности. Учение о биогеоценозе и сам термин создал крупный российский ученый–ботаник В.Н.Сукачев.

Экосистем на Земле очень много. Существенным свойством каждой из них является круговорот веществ и потоки энергии .из-за большой роли живых организмов круговорот веществ в экосистемах часто называют биологическим круговоротом веществ .

Биологический круговорот веществ является главным условием существования экосистемы.

Круговорот веществ в биогеоценозе осуществляется благодаря наличию в нем четырех неотъемлемых компонентов

- Назовите неотъемлемые компоненты биогеоценоза .

1) абиотического компонента (запаса биогенных веществ и солнечной энергии); 2) продуцентов (создающих органическое вещество); 3) консументов (потребляющих органическое вещество); 4) редуцентов (разлагающих мертвое органическое вещество).

Энергия, химические вещества и организмы связаны между собой потоками энергии и круговоротом веществ

От чего зависит устойчивость экосистемы?

(Биогеоценозы (экосистемы) устойчивы лишь в том случае, когда все четыре компонента, входящие в их состав, поддерживают круговорот веществ достаточно полно.)

Круговорот веществ поддерживается в биогеоценозах (экосистемах) постоянным притоком все новых и новых порций энергии. Хотя по закону сохранения энергии она не исчезает бесследно, а лишь переходит из одной формы в другую, круговорота энергии в экосистемах быть не может. Расходуясь на жизнедеятельность организмов, усвоенная ими энергия постепенно переходит в тепловую форму и рассеивается в окружающем пространстве. Таким образом, деятельность экосистемы напоминает круговое вращение мельничного колеса (круговорот веществ) в потоке быстротекущей воды (поток энергии).

Одна и та же порция вещества и заключенная в нем энергия не могут бесконечно передаваться по сложной сети питания, связывающей организмы в биогеоценозе. На самом деле трофическая сеть состоит из переплетения коротких пищевых (трофических) цепей – последовательного ряда питающихся друг другом организмов, в котором можно проследить расходование первоначальной порции энергии. Каждое звено ряда называют трофическим уровнем .

Каково значение пищевых связей? (Пищевые связи между организмами играют важную роль. Во–первых, они обеспечивают передачу органического вещества и заключенной в нем энергии от одного организма к другому. Вместе, таким образом, уживаются виды, которые поддерживают жизнь друг друга. Во–вторых, пищевые связи служат механизмом регуляции численности популяций в природе. Пищевые отношения между организмами стоят заслоном на пути чрезмерного размножения отдельных видов, что делает природные сообщества более устойчивыми и стабильными.

Биология. Общая биология. 11 класс. Базовый уровень Сивоглазов Владислав Иванович

25. Пищевые связи. Круговорот веществ и энергии в экосистемах

Вспомните!

Какие обязательные компоненты входят в состав любой экосистемы?

Живые организмы находятся в постоянном взаимодействии друг с другом и с факторами внешней среды, формируя устойчивую саморегулирующуюся и самоподдерживающуюся экосистему. Особенности видового состава этой системы определяются историческими и климатическими условиями, а взаимоотношения организмов друг с другом и с окружающей средой строятся на основе пищевого поведения.

В рассмотренной нами экосистеме дубравы олени едят травянистые растения и листья кустарников, белки не прочь полакомиться желудями и грибами, ёж съедает дождевого червя, а филин на ночной охоте ловит мышей и полёвок. Многочисленные насекомые, желуди дуба, плоды дикой яблони и груши, семена и ягоды – прекрасный корм птицам. Мёртвые органические остатки падают на землю. На них развиваются бактерии, которых потребляют простейшие, служащие, в свою очередь, кормом многочисленным мелким почвенным беспозвоночным. Все виды организмов связаны друг с другом сложной системой пищевых взаимоотношений.

При изучении структуры любой экосистемы становится очевидным, что её устойчивость зависит от многообразия пищевых связей, существующих между разными видами этого сообщества. Причём, чем больше видовое многообразие, тем устойчивее структура. Представьте себе систему, в которой хищник и жертва представлены только одиночными видами, допустим «лиса – заяц». Исчезновение зайцев неизбежно приведёт к гибели хищников, и экосистема, потеряв два своих компонента, начнёт разрушаться. Если же в качестве пищи в данной экосистеме лиса может использовать и грызунов, и лягушек, и мелких птиц, то пропажа одного источника пищи не приведёт к разрушению всей структуры, а освободившуюся экологическую нишу вскоре займут другие организмы со сходными требованиями к среде.

В экосистеме происходит постоянный перенос вещества и энергии, заключённой в пище, от одних организмов к другим. Растения (продуценты), используя солнечную энергию, образуют сложные органические соединения. Эти вещества употребляют гетеротрофы (консументы), продукты жизнедеятельности которых, возвращаясь в окружающую среду, вновь используются автотрофными организмами. В экосистеме существует постоянный круговорот вещества и энергии, который поддерживается энергией солнца. Каждый организм, участвующий в этом процессе, находится на определённом трофическом, или пищевом, уровне, образуя трофическое (пищевое) звено. В результате соединения нескольких трофических звеньев образуется пищевая цепь, в которой каждое предыдущее звено служит пищей последующему. Если проследить структуру отдельных пищевых цепей, то можно обнаружить, что цепи очень редко изолированы друг от друга. Обычно одно и то же растение служит пищей нескольким животным, которые, в свою очередь, могут быть съедены разными хищниками. Таким образом, все пищевые цепи связаны между собой в единую пищевую сеть.

Первый трофический уровень экосистемы образуют автотрофные организмы, в основном зелёные растения.

Пятый уровень формируют редуценты, которые потребляют мёртвое органическое вещество.

Как правило, в экосистеме существует от трёх до пяти трофических уровней. Пищевую цепь, которая начинается от растений, называют пастбищной пищевой цепью: например, осина? заяц? волк. Если цепь питания начинается с детрита (мёртвой органики), её называют детритной цепью: листовой опад? дождевой червь? певчий дрозд? ястреб-перепелятник (рис. 78).

Обычно размеры хищников с переходом на следующий трофический уровень возрастают, а их численность снижается. Если мы попробуем оценить общее количество биомассы на каждом трофическом уровне, то заметим определённую закономерность. В большинстве наземных экосистем с повышением трофического уровня количество биомассы будет неуклонно снижаться (рис. 79). Подобная закономерность носит название экологической пирамиды и связана с тем, что на каждом трофическом уровне организмы способны использовать лишь 5–15 % энергии поступившей биомассы для построения своего тела. Остальная энергия расходуется или на движение, рассеивается в виде тепла или просто не усваивается. Именно поэтому число трофических уровней в экосистеме ограничено и редко бывает более пяти-шести.

Рис. 78. Пример пищевых связей. Детритная цепь

Основание пирамиды образуют продуценты (растения). Над ними располагаются растительноядные животные. Следующий уровень образуют хищники первого порядка. Вершину пирамиды занимают наиболее крупные плотоядные животные. Причём число уровней в пирамиде соответствует числу звеньев в пищевой цепи. Различают пирамиду численности (особей), пирамиду биомассы и пирамиду энергии.

Наличие сложных пищевых взаимоотношений обеспечивает устойчивость экосистем. Если изменится среда обитания продуцентов, через пищевую сеть это неизбежно отразится на всех остальных организмах экосистемы. Нельзя нарушить какой-либо из экологических факторов, не затронув в той или иной степени существование всех видов, составляющих экосистему. Следовательно, изменение любого абиотического или биотического фактора неизбежно повлечёт за собой изменение всей экосистемы.

Рис. 79. Пример экологической пирамиды биомассы

Вопросы для повторения и задания

1. Что такое пищевая цепь (цепь питания) и что лежит в её основе?

2. Чем определяется устойчивость экосистемы?

3. Составьте пищевую цепь, начинающуюся от растений.

4. Приведите примеры детритных пищевых цепей.

5. Объясните, что такое экологическая пирамида.

Подумайте! Выполните!

1. Почему конкурентные взаимоотношения существуют на одном трофическом уровне? Докажите свою точку зрения.

2. Создайте экологическую тропу для проведения учебных занятий (групповой проект).

Работа с компьютером

Обратитесь к электронному приложению. Изучите материал и выполните задания.

Данный текст является ознакомительным фрагментом. Из книги Микробиология: конспект лекций автора Ткаченко Ксения Викторовна

ЛЕКЦИЯ № 16. Пищевые токсикоинфекции. Пищевые токсикозы 1. Общая характеристика и возбудители ПТИ Пищевые токсикоинфекции (ПТИ) – обширная группа острых кишечных инфекций, развивающихся после употребления в пищу продуктов, инфицированных возбудителями и их

Из книги Микробиология автора Ткаченко Ксения Викторовна

31. Пищевые токсикоинфекции и пищевые токсикозы Пищевые токсикоинфекции (ПТИ) – обширная группа острых кишечных инфекций, развивающихся после употребления в пищу продуктов, инфицированных возбудителями и их токсинами.Пищевые токсикоинфекции могут

Из книги Общая экология автора Чернова Нина Михайловна

9.1. Понятие об экосистемах. Учение о биогеоценозах Сообщества организмов связаны с неорганической средой теснейшими материально-энергетическими связями. Растения могут существовать только за счет постоянного поступления в них углекислого газа, воды, кислорода,

Из книги Реакции и поведение собак в экстремальных условиях автора Герд Мария Александровна

9.2. Поток энергии в экосистемах Поддержание жизнедеятельности организмов и круговорот вещества в экосистемах возможны только за счет постоянного притока энергии (рис. 146). В конечном счете вся жизнь на Земле существует за счет энергии солнечного излучения, которая

Из книги Возрастная анатомия и физиология автора Антонова Ольга Александровна

Пищевые рефлексы Во 2–4-е сутки опытов аппетит собак был плохим: они либо ничего не ели, либо съедали 10–30% суточного рациона. Вес большинства животных в это время снижался в среднем на 0,41 кг, что для маленьких собачек было существенно. Значительно сокращалось

Из книги Биология [Полный справочник для подготовки к ЕГЭ] автора Лернер Георгий Исаакович

Пищевые рефлексы. Вес В переходный период собаки ели и пили плохо, мало или совсем не реагировали на вид еды. Взвешивание показало несколько меньшее, чем при первом способе тренировки, снижение веса животных (в среднем на 0,26 кг). В начале периода нормализации животные

Из книги Путешествие в страну микробов автора Бетина Владимир

Тема 10. ВОЗРАСТНЫЕ ОСОБЕННОСТИ ОБМЕНА ВЕЩЕСТВ И ЭНЕРГИИ 10.1. Характеристика обменных процессов Обмен веществ и энергии – основа процессов жизнедеятельности организма. В организме человека, в его органах, тканях, клетках идет непрерывный процесс синтеза, т. е.

Из книги Теория адекватного питания и трофология [таблицы текстом] автора

Из книги Теория адекватного питания и трофология [таблицы картинками] автора Уголев Александр Михайлович

Из книги Биология. Общая биология. 10 класс. Базовый уровень автора Сивоглазов Владислав Иванович

Из книги Антропология и концепции биологии автора Курчанов Николай Анатольевич

Из книги автора

Опасные пищевые продукты Продукты питания часто бывают местом размножения микробов, вырабатывающих токсины. Clostridium botulinum облюбовал мясную пищу и выделяет в нее ботулинический токсин, один из наиболее сильнодействующих ядов. Если человек съест колбасу, ветчину или

Из книги автора

Из книги автора

3.4. Пищевые волокна В соответствии с теорией сбалансированного питания, в желудочно-кишечном тракте происходит разделение пищевых веществ на нутриенты и балласт. Полезные вещества расщепляются и всасываются, тогда как балластные выбрасываются из организма. Однако,

Из книги автора

16. Обмен веществ и превращение энергии. Энергетический обмен Вспомните!Что такое метаболизм?Из каких двух взаимосвязанных процессов он состоит?Где в организме человека происходит расщепление большей части органических веществ, поступающих с пищей?Обмен веществ и

Из книги автора

2.3. Обмен веществ и энергии Вся совокупность химических реакций, протекающих в живых организмах, называется обменом веществ, или метаболизмом. В результате этих реакций энергия, запасенная в химических связях, переходит в другие формы, т. е. обмен веществ всегда

В круговороте веществ принимают участие все живые организмы, поглощающие из внешней среды одни вещества и выделяющие в нее другие. Так, растения потребляют из внешней среды углекислый газ, воду и минеральные соли и выделяют в нее кислород. Животные вдыхают кислород, выделенный растениями, а поедая их, усваивают синтезированные из воды и углекислого газа органические вещества и выделяют углекислый газ, воду и вещества непереваренной части пищи. При разложении бактериями и грибами отмерших растений и животных образуется дополнительное количество углекислого газа, а органические вещества превращаются в минеральные, которые попадают в почву и снова усваиваются растениями. Таким образом, атомы основных химических элементов постоянно совершают миграцию из одного организма в другой, из почвы, атмосферы и гидросферы - в живые организмы, а из них - в окружающую среду, пополняя таким образом неживое вещество биосферы. Эти процессы повторяются бесконечное число раз. Так, например, весь атмосферный кислород проходит через живое вещество за 2 тыс. лет, весь углекислый газ - за 200-300 лет. Круговорот веществ, как и все происходящие в природе процессы, требует постоянного притока энергии. Основой биогенного круговорота, обеспечивающего существование жизни, является солнечная энергия. Связанная в органических веществах энергия но ступеням пищевой цепи уменьшается, потому что большая ее часть поступает в окружающую среду в виде тепла или же тратится на осуществление процессов, происходящих в организмах, Поэтому в биосфере наблюдается поток энергии и ее преобразование. Таким образом, биосфера может быть устойчивой только при условии постоянного круговорота веществ и притока солнечной энергии.

Билет №9

1. Понятие о гене. Генетический код, его свойства.

Ген - структурная и функциональная единица наследственности живых организмов. Ген представляет собой последовательность ДНК, задающую последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении. При этом некоторые органеллы (митохондрии, пластиды) имеют собственную, определяющую их признаки, ДНК, не входящую в геном организма.

Генетический код - это свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

Свойства генетического кода Триплетность - значащей единицей кода является сочетание трёх нуклеотидов (триплет, или кодон) . Непрерывность - между триплетами нет знаков препинания, то есть информация считывается непрерывно. Неперекрываемость - один и тот же нуклеотид не может входить одновременно в состав двух или более триплетов. (Не соблюдается для некоторых перекрывающихся генов вирусов, митохондрий и бактерий, которые кодируют несколько белков, считывающихся со сдвигом рамки) . Однозначность - определённый кодон соответствует только одной аминокислоте. (Свойство не является универсальным. Кодон UGA у Euplotes crassus кодирует две аминокислоты - цистеин и селеноцистеин)

Вырожденность (избыточность) - одной и той же аминокислоте может соответствовать несколько кодонов.

Универсальность - генетический код работает одинаково в организмах разного уровня сложности - от вирусов до человека (на этом основаны методы генной инженерии)

Чтобы проследить взаимосвязь живой и неживой природы, необходимо понимать, как происходит круговорот веществ в биосфере.

Смысл

Круговорот веществ - это повторяющееся участие одних и тех же веществ в процессах, происходящих в литосфере, гидросфере и атмосфере.

Выделяют два типа круговорота веществ:

  • геологический (большой круговорот);
  • биологический (малый круговорот).

Движущей силой геологического круговорота веществ являются внешние (солнечная радиация, гравитация) и внутренние (энергия недр Земли, температура, давление) геологические процессы, биологического - деятельность живых существ.

Большой круговорот происходит без участия живых организмов. Под действием внешних и внутренних факторов формируется и сглаживается рельеф. В результате землетрясений, выветривания, извержения вулканов, движения земной коры образуются долины, горы, реки, холмы, формируются геологические слои.

Рис. 1. Геологический круговорот.

Биологический круговорот веществ в биосфере происходит при участии живых организмов, которые преобразуют и передают энергию по пищевой цепочке. Устойчивая система взаимодействия живого (биотического) и неживого (абиотического) веществ называется биогеоценозом.

ТОП-3 статьи которые читают вместе с этой

Чтобы происходил круговорот веществ, необходимо выполнение нескольких условий:

  • наличие примерно 40 химических элементов;
  • присутствие солнечной энергии;
  • взаимодействие живых организмов.

Рис. 2. Биологический круговорот.

У цикла веществ нет определённой отправной точки. Процесс непрерывный и одна стадия неизменно перетекает в другую. Можно начать рассматривать цикл из любой точки, суть останется прежней.

Общий круговорот веществ включает следующие процессы:

  • фотосинтез;
  • метаболизм;
  • разложение.

Растения, являющиеся продуцентами в пищевой цепочке, преобразуют солнечную энергию в органические вещества, которые поступают с пищей в организм животных - редуцентов. После смерти происходит разложение растений и животных с помощью консументов - бактерий, грибов, червей.

Рис. 3. Пищевая цепочка.

Круговорот веществ

В зависимости от расположения веществ в природе выделяют два типа круговорота:

  • газовый - происходит в гидросфере и атмосфере (кислород, азот, углерод);
  • осадочный - происходит в земной коре (кальций, железо, фосфор).

Круговорот веществ и энергии в биосфере на примере нескольких элементов описан в таблице.

Вещество

Цикл

Значение

Большой круговорот. Испаряется с поверхности океана или суши, задерживается в атмосфере, выпадает в виде осадков, возвращаясь в водоёмы и на поверхность Земли

Формирует природные и климатические условия планеты

На суше - малый круговорот веществ. Получают продуценты, передают редуцентам и консументам. Возвращается в виде углекислого газа. В океане - большой круговорот. Задерживается в виде осадочных пород

Является основой всех органических веществ

Азотфиксирующие бактерии, находящиеся в корнях растений, связывают свободный азот из атмосферы и закрепляют в растениях в виде растительного белка, который передаётся дальше по пищевой цепочке

Входит в состав белков и азотистых оснований

Кислород

Малый круговорот - поступает в атмосферу в процессе фотосинтеза, потребляется аэробными организмами. Большой круговорот - образуется из воды и озона под действием ультрафиолета

Участвует в процессах окисления, дыхания

Находится в атмосфере и почве. Усваивают бактерии и растения. Часть оседает на морском дне

Необходима для построения аминокислот

Большой и малый круговороты. Содержится в горных породах, потребляется растениями из почвы и передаётся по цепи питания. После разложения организмов возвращается в почву. В водоёме усваивается фитопланктоном и передаётся рыбам. После отмирания рыб часть остаётся в скелете и оседает на дно

Входит в состав белков, нуклеиновых кислот

Прекращение круговорота веществ в природе означает нарушение хода жизни. Чтобы жизнь продолжалась, необходимо, чтобы энергия проходила цикл за циклом.

Что мы узнали?

Из урока узнали о сущности большого и малого круговорота веществ в биосфере, взаимодействии неживой природы с живыми организмами, а также рассмотрели круговорот воды, углерода, азота, кислорода, серы и фосфора.

Тест по теме

Оценка доклада

Средняя оценка: 4.5 . Всего получено оценок: 129.



Поделитесь с друзьями или сохраните для себя:

Загрузка...