Температурный режим подстилающей поверхности. Тепловой режим подстилающей поверхности и атмосферы Излучение в мировое пространство

Ее величину и изменение на той поверхности, которая непосредственно нагревается солнечными лучами. Нагреваясь, эта поверхность, передает тепло (в длинноволновом диапазоне) как ниже лежащим слоям, так и атмосфере. Саму поверхность называют деятельной поверхностью .

Максимальное значение всех элементов теплового баланса наблюдается в околополуденные часы. Исключение представляет максимум теплообмена в почве, приходящийся на утренние часы. Максимальные амплитуды суточного хода составляющих теплового баланса отмечается летом, минимальные – зимой.

В суточном ходе температуры поверхности, сухой и лишенной растительности, в ясный день максимум наступает после 14 часов, а минимум – около момента восхода Солнца. Нарушать суточный ход температуры может облачность, вызывая смещение максимума и минимума. Большое влияние на ход температуры оказывает влажность и растительность поверхности.

Дневные максимумы температуры поверхности могут составлять +80 о С и более. Суточные колебания достигают 40 о. Величины экстремальных значений и амплитуды температур зависят от широты места, времени года, облачности, тепловых свойств поверхности, ее цвета, шероховатости, характера растительного покрова, ориентировки склонов (экспозиции).

Распространение тепла от деятельной поверхности зависит от состава подстилающего субстрата, и будет определяться его теплоемкостью и теплопроводностью. На поверхности материков подстилающим субстратом являются почвогрунты, в океанах (морях) – вода.

Почвогрунты в общем обладают меньшей чем вода теплоемкостью, и большей теплопроводностью. Поэтому они нагреваются и остывают быстрее, чем вода.

На передачу тепла от слоя к слою затрачивается время, и моменты наступления максимальных и минимальных значений температуры в течение суток запаздывает на каждые 10 см примерно на 3 часа. Чем глубже слой, тем меньше тепла он получает и тем слабее в нем колебания температур. Амплитуда суточных колебаний температур с глубиной уменьшается на каждые 15 см в 2 раза. На глубине в среднем около 1 м суточные колебания температуры почвы «затухают». Слой в котором они прекращаются называется слоем постоянной суточной температуры.

Чем больше период колебаний температур, тем глубже они распространяются. Так в средних широтах слой постоянной годовой температуры находится на глубине 19- 20 м, в высоких – на глубине 25 м, а в тропических широтах, где годовые амплитуды температур невелики – на глубине 5- 10 м. Моменты наступления максимальных и минимальных температур в течение года запаздывают в среднем на 20-30 суток на каждый метр.

Температура в слое постоянной годовой температуры близка к средней годовой температуре воздуха над поверхностью.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Температурный режим подстилающей поверхности

1 . Температурный режим подстилающей поверхности и деятельн о го слоя

температура почва прибор

Подстилающая поверхность, или деятельная поверхность - это поверхность земли (почвы, воды, снега и т.д.), взаимодействующая с атмосферой в процессе тепло- и влагообмена.

Деятельный слой - это слой почвы (включая растительность и снежный покров) или воды, участвующий в теплообмене с окружающей средой, и на глубину которого распространяются суточные и годовые колебания температуры.

Тепловое состояние подстилающей поверхности оказывает значительное влияние на температуру низших слоев воздуха. Это уменьшающееся с высотой влияние может обнаруживаться даже в верхней тропосфере.

Существуют различия в тепловом режиме суши и воды, которые объясняются различием их теплофизических свойств и процессов теплообмена между поверхностью и нижележащими слоями.

В почве коротковолновая солнечная радиация проникает на глубину в десятые доли миллиметра, где она преобразуется в тепло. В нижележащие слои это тепло передается путем молекулярной теплопроводности.

В воде в зависимости от ее прозрачности солнечная радиация проникает на глубины до десятков метров, а перенос тепла в глубинные слои происходит в результате турбулентного перемешивания, термической конвекции, а также испарения.

Турбулентность в водоемах обусловлена прежде всего волнением и течениями. В ночное время суток и в холодное время года развивается термическая конвекция, когда охлажденная на поверхности вода опускается вниз вследствие возросшей плотности и замещается более теплой водой из нижних слоев. При значительном испарении с поверхности моря верхний слой воды становится более соленым и плотным, в результате чего более теплая вода опускается с поверхности в глубину. Поэтому суточные колебания температуры в воде распространяются на глубину до десятков метров, а в почве - менее метра. Годовые колебания температуры воды распространяются на глубину до сотен метров, а в почве - только на 10-20 м; т.е. в почве тепло сосредоточивается в тонком верхнем слое, который нагревается при положительном радиационном балансе и остывает - при отрицательном.

Таким образом, суша быстро нагревается и быстро остывает, а вода медленно нагревается и медленно остывает. Большой тепловой инерции водоемов способствует и то, что удельная теплоемкость воды в 3-4 раза больше, чем почвы. По этим же причинам суточные и годовые колебания температуры на поверхности почвы намного больше, чем на поверхности воды.

Суточный ход температуры поверхности почвы в ясную погоду изображается волнообразной кривой, напоминающей синусоиду. При этом минимум температуры наблюдается вскоре после восхода Солнца, когда радиационный баланс меняет знак с «-» на «+». Максимум температуры приходится на 13-14 ч. Плавность суточного хода температуры может нарушаться наличием облаков, осадков, а также адвективными изменениями.

Разность между максимальной и минимальной температурами за сутки - суточная амплитуда температуры.

Амплитуда суточного хода температуры поверхности почвы зависит от полуденной высоты Солнца, т.е. от широты места и времени года. Летом в ясную погоду в умеренных широтах амплитуда температуры оголенной почвы может достигать 55° С, а в пустынях - 80° и более. В пасмурную погоду амплитуда меньше, чем в ясную. Облака днем задерживают прямую солнечную радиацию, а ночью уменьшают эффективное излучение подстилающей поверхности.

На температуру почвы оказывают влияние растительный и снежный покровы. Растительный покров уменьшает амплитуду суточных колебаний температуры поверхности почвы, так как он препятствует нагреванию ее солнечными лучами днем и защищает от радиационного выхолаживания ночью. При этом понижается и средняя суточная температура поверхности почвы. Снежный покров, обладая малой теплопроводностью, предохраняет почву от интенсивной потери тепла, при этом резко уменьшается суточная амплитуда температуры по сравнению с оголенной почвой.

Разность между максимальной и минимальной средними месячными температурами в течение года называется годовой амплитудой температуры.

Амплитуда температуры подстилающей поверхности в годовом ходе зависит от широты (в тропиках - минимальная) и растет с широтой, что находится в соответствии с изменениями в меридианальном направлении годовой амплитуды месячных сумм солнечной радиации в солярном климате.

Распространение тепла в почве от поверхности вглубь достаточно близко соответствует закону Фурье . Независимо от вида почвы и ее влажности, период колебаний температуры не изменяется с глубиной, т.е. на глубине суточный ход сохраняется с периодом 24 ч, в годовом ходе - в 12 месяцев. При этом амплитуда колебаний температуры с глубиной уменьшается.

На некоторой глубине (около 70 см, разной в зависимости от широты и сезона года) начинается слой с постоянной суточной температурой. Амплитуда годовых колебаний убывает практически до нуля на глубине около 30 м в полярных районах, около 15-20 м - в умеренных широтах. Максимальные и минимальные температуры как в суточном, так и в годовом ходе наступают позднее, чем на поверхности, причем запаздывание прямо пропорционально глубине.

Наглядное представление о распределении температуры почвы по глубине и во времени дает график термоизоплет, который строится по многолетним средним месячным температурам почвы (рис. 1.2). На вертикальной оси графика отложены глубины, а на горизонтальной оси - месяцы. Линии равных температур на графике называются термоизоплетами.

Перемещение по горизонтальной линии позволяет проследить изменение температуры на данной глубине в течение года, а перемещение по вертикальной линии дает представление об изменении температуры по глубине для данного месяца. Из графика видно, что максимальная годовая амплитуда температуры на поверхности с глубиной убывает.

В силу рассмотренных выше различий процессов теплообмена между поверхностью и глубинными слоями водоемов и суши суточные и годовые изменения температуры поверхности водоемов намного меньше, чем у суши. Так, суточная амплитуда изменения температуры поверхности океанов составляет около 0,1-0,2° С в умеренных широтах, и около 0,5 °С в тропиках. При этом минимум температуры отмечается через 2-3 ч после восхода Солнца, а максимум - около 15-16 ч. Годовая амплитуда колебаний температуры поверхности океана значительно больше, чем суточная. В тропиках она порядка 2-3° С, в умеренных широтах около 10° С. Суточные колебания обнаруживаются на глубинах до 15-20 м, а годовые - до 150-400 м.

2 Приборы измерения температуры деятельного слоя

Измерение температуры поверхности почвы, снежного покрова и определение их состояния.

Поверхность почвы и снежного покрова является подстилающей поверхностью, которая непосредственно взаимодействует с атмосферой, поглощает солнечную и атмосферную радиацию и сама излучает в атмосферу, участвует в тепло- и влагообмене и оказывает влияние на термический режим нижележащих слоев почвы.

Для измерения температуры почвы и снежного покрова в сроки наблюдений используется термометр ртутный метеорологический ТМ-3 с пределами шкал от -10 до +85° С; от -25 до +70° С; от -35 до +60° С, с ценой деления шкалы 0,5° С. Погрешность измерения при температурах выше -20° С составляет ±0,5° С, при более низких температурах ±0,7° С. Для определения экстремальных температур между сроками используются термометры ма к симальный ТМ-1 и минимальный ТМ-2 (такие же, как для определения температуры воздуха в психрометрической будке).

Измерения температуры поверхности почвы и снежного покрова производятся на незатененном участке размером 4х6 м в южной части метеорологической площадки. Летом измерения производятся на оголенной, разрыхленной почве, для чего весной участок перекапывается.

Отсчеты по термометрам берут с точностью до 0,1 °С. Состояние почвы и снежного покрова оцениваются визуально. Измерение температуры и наблюдение за состоянием подстилающей поверхности ведутся в течение всего года.

Измерение температуры в верхнем слое почвы

Для измерения температуры в верхнем слое почвы применяют терм о метры ртутные метеорологические коленчатые (Савинова) ТМ-5 (выпускаются комплектом по 4 термометра для измерения температуры почвы на глубинах 5, 10, 15, 20 см). Пределы измерения: от -10 до +50° С, цена деления шкалы 0,5° С, погрешность измерения ±0,5° С. Резервуары цилиндрические. Термометры изогнуты под углом 135° в местах, отстоящих от резервуара на 2-3 см. Это позволяет устанавливать термометры так, чтобы резервуар и часть термометра до изгиба находились в горизонтальном положении под слоем почвы, а часть термометра со шкалой располагалась над почвой.

Капилляр на участке от резервуара до начала шкалы покрыт теплоизоляционной оболочкой, что уменьшает влияние на показания термометра слоя почвы, лежащего над его резервуаром, обеспечивает более точное измерение температуры на глубине, где находится резервуар.

Наблюдения по термометрам Савинова производят на той же площадке, где устанавливаются термометры для измерения температуры поверхности почвы, в единые сроки и только в теплую часть года. При понижении температуры на глубине 5 см ниже 0° С термометры выкапывают, весной устанавливают после схода снежного покрова.

Измерение температуры почвы и грунта на глубинах под естественным покровом

Для измерения температуры почвы применяется термометр ртутный метеорологический почвенно-глубинный ТМ-10 . Его длина 360 мм, диаметр 16 мм, верхний предел шкалы от + 31 до +41° С, а нижний - от -10 до -20° С. Цена деления шкалы 0,2° С, погрешность измерения при плюсовых температурах ±0,2° С, при отрицательных ±0,3° С.

Термометр помещается в винипластовую оправу, снизу заканчивающуюся медным или латунным колпачком, заполненным вокруг резервуара термометра медными опилками. К верхнему концу оправы крепится деревянный стержень, с помощью которого термометр погружается в эбонитовую трубу, находящуюся в грунте на глубине измерения температуры почвы.

Измерения производятся на участке размером 6х8 м с естественным растительным покровом в юго-восточной части метеоплощадки. Вытяжные почвенно-глубинные термометры устанавливаются по линии восток-запад на расстоянии 50 см друг от друга на глубинах 0,2; 0,4; 0,8; 1,2; 1,6; 2,4; 3,2 м в порядке возрастания глубин.

При снежном покрове до 50 см выступающая над поверхностью земли часть трубы составляет 40 см, при большей высоте снежного покрова - 100 см. Установку наружных (эбонитовых) труб производят с помощью бура с тем, чтобы меньше нарушать естественное состояние почвы.

Наблюдения по вытяжным термометрам производят круглый год, ежедневно на глубинах 0,2 и 0,4 м - все 8 сроков (кроме периода, когда высота снега превышает 15 см), на остальных глубинах - 1 раз в сутки.

Измерение температуры воды у поверхности

Для измерения используется ртутный термометр с ценой деления 0,2° С, с пределами шкалы от -5 до +35° С. Термометр помещен в оправу, которая предназначена для сохранения показаний термометра после его поднятия из воды, а также для предохранения от механических повреждений. Оправа состоит из стакана и двух трубок: наружной и внутренней.

Термометр в оправе помещается так, чтобы его шкала располагалась против имеющихся в трубках прорезей, а резервуар термометра - в средней части стакана. Оправа имеет дужку для крепления к тросу. При погружении термометра поворотом наружного чехла прорезь закрывают, а после подъема и для взятия отсчета - открывают. Время выдержки термометра в точке 5-8 мин, заглубление в воду - не более 0,5 м.

Размещено на Allbest.ru

...

Подобные документы

    Основные условия, определяющие структуру и физические свойства снежного покрова. Влияние характера подстилающей снег поверхности и температурного режима внутри снежного покрова. Экстремальные и средние значения высоты снежного покрова Пермского края.

    курсовая работа , добавлен 21.02.2013

    Наблюдение и регистрация суточного хода метеовеличин по данным метеорологической станции. Суточный ход температуры поверхности почвы и воздуха, упругости водяного пара, относительной влажности, атмосферного давления, направления и скорости ветра.

    реферат , добавлен 01.10.2009

    Расчёт средних многолетних ежедневных норм температуры с помощью программы Pnorma2 для разных периодов и построение графиков зависимости норм температуры для дня года. Годовое распределение температур. Пики роста и падения температуры в разное время года.

    курсовая работа , добавлен 05.05.2015

    Определение местного времени в Вологде. Разница между поясным и местным временем в Архангельске. Поясное и декретное время в Чите. Изменение температуры воздуха с высотой. Определение высоты уровней конденсации и сублимации, коэффициента увлажнения.

    контрольная работа , добавлен 03.03.2011

    Необходимость получения климатической информации. Временная изменчивость средней месячной и средней суточной температуры воздуха. Анализ территорий с разными климатическими характеристиками. Температурный режим, ветровой режим и атмосферное давление.

    реферат , добавлен 20.12.2010

    Современные природные условия на земной поверхности, их эволюция и закономерности изменения. Основная причина зональности природы. Физические свойства водной поверхности. Источники атмосферных осадков на суше. Широтная географическая зональность.

    реферат , добавлен 04.06.2010

    Анализ метеорологических величин (температуры воздуха, влажности и атмосферного давления) в нижнем слое атмосферы в г. Хабаровск за июль. Особенности определения влияния метеорологических условий в летний период на распространение ультразвуковых волн.

    курсовая работа , добавлен 17.05.2010

    Основные виды атмосферных осадков и их характеристика. Типы суточного и годового хода осадков. Географическое распределение осадков. Показатели снежного покрова на поверхности Земли. Атмосферное увлажнение как степень снабжения местности влагой.

    презентация , добавлен 28.05.2015

    Климатология как одна из важнейших частей метеорологии и в то же время частная географическая дисциплина. Этапы расчета многолетних норм межсуточных изменений приземной температуры города Санкт-Петербурга, основные способы оценки климатических условий.

    дипломная работа , добавлен 06.02.2014

    Влияние метеорологических элементов на организм человека. Биоклиматические индексы, используемые для оценки погоды теплого и холодного времени года. Индекс патогенности. Измерение ультрафиолетового излучения, показателей температуры, скорости ветра.

Тепловой режим земной поверхности. Солнечная радиации, приходящая на Землю, нагревает главным образом ее поверхность. Термическое состояние земной поверхности является поэтому основным источником нагревания и охлаждения нижних слоев атмосферы.

Условия нагревания земной поверхности зависят от ее физических свойств. Прежде всего существуют резкие различия в нагревании поверхности суши и воды. На суше тепло распространяется в глубину преимущественно путем мало эффективной молекулярной теплопроводности. Суточные колебания температуры на поверхности суши распространяются, в связи с этим, только на глубину до 1 м, а годовые - до 10-20 м. В водной поверхности температура распространяется в глубину главным образом путем перемешивания водных масс; молекулярная теплопроводность имеет ничтожное значение. Кроме того здесь играет роль более глубокое проникновение радиации в воду, а также более высокая теплоемкость воды по сравнению с сушей. Поэтому суточные и годовые колебания температуры распространяются в воде на большую глубину, чем на суше: суточные - на десятки метров, годовые - на сотни метров. В результате тепло, приходящее и уходящее на земную поверхность, распространяется в более тонком слое суши, чем водной поверхности. Это значит, что суточные и годовые колебания температуры на поверхности суши должны быть гораздо больше, чем на поверхности воды. Так как от земной поверхности нагревается воздух, то при одинаковом значении солнечной радиации летом и днем температура воздуха над сушей будет выше, чем над морем, а зимой и ночью наоборот.

Неоднородность поверхности суши также сказывается на условиях ее нагревания. Растительный покров днем препятствует сильному нагреванию почвы, а ночью уменьшает ее охлаждение. Снежный покров предохраняет зимой почву от чрезмерной потери тепла. Суточные амплитуды температуры под растительным покровом будут, таким образом, уменьшены. Совместное действие растительного покрова летом и снежного зимой уменьшает годовую амплитуду температуры по сравнению с обнаженной поверхностью.

Крайние пределы колебания температуры поверхности суши следующие. В пустынях субтропиков температура может подняться до +80°, на снежной поверхности Антарктиды может опуститься до -90°.

На водной поверхности моменты наступления максимума и минимума температуры в суточном и годовом ходе смещаются по сравнению с сушей. Суточный максимум наступает около 15-16 час, минимум через 2-3 час после восхода Солнца. Годовой максимум температуры поверхности океана приходится в северном полушарии на август, годовой минимум - на февраль. Максимальная наблюдавшаяся температура поверхности океана около 27°, поверхности внутренних водных бассейнов 45°; минимальная температура соответственно -2 и -13°.

Тепловой режим атмосферы. Изменение температуры воздуха определяется несколькими причинами: солнечной и земной радиацией, молекулярной теплопроводностью, испарением и конденсацией водяных паров, адиабатическими изменениями и переносом тепла с массой воздуха.

Для нижних слоев атмосферы непосредственное поглощение солнечной радиации имеет небольшое значение, гораздо существеннее поглощение ими длинноволновой земной радиации. Молекулярной теплопроводностью нагревается воздух, непосредственно прилегающий к земной поверхности. При испарении воды затрачивается тепло, а следовательно, воздух охлаждается, при конденсации водяных паров тепло выделяется, и воздух нагревается.

Большое влияние на распределение температуры воздуха имеет адиабатическое изменение ее, т. е. изменение температуры без теплообмена с окружающим воздухом. Поднимающийся воздух расширяется; на расширение затрачивается работа, что приводит к понижению температуры. При опускании воздуха происходит обратный процесс. Сухой или не насыщенный водяными парами воздух адиабатически охлаждается каждые 100 м подъема на 1°. Воздух, насыщенный водяными парами, охлаждается при подъеме на меньшую величину (в среднем на 0°,6 на 100 м подъема), так как в этом случае происходит конденсация водяных паров, которая сопровождается выделением тепла.

Особенно большое влияние на тепловой режим атмосферы имеет перенос тепла вместе с массой воздуха. В результате общей циркуляции атмосферы все время происходит как вертикальное, так и горизонтальное перемещение воздушных масс, захватывающее всю толщу тропосферы и проникающее даже в нижнюю стратосферу. Первое называется конвекцией, второе - адвекцией. Это основные процессы, определяющие фактическое распределение температуры воздуха над поверхностью суши и моря и на разных высотах. Адиабатические процессы являются лишь физическим следствием изменения температуры в движущемся по законам циркуляции атмосферы воздухе. О роли переноса тепла вместе с массой воздуха можно судить по тому, что количество тепла, получаемое воздухом в результате конвекции, в 4000 раз больше, чем тепла, получаемого при излучении с земной поверхности, и в 500000 раз больше,

чем тепла, получаемого молекулярной теплопроводностью. На основании уравнения состояния газов температура с высотой должна понижаться. Однако при особых условиях нагревания и охлаждения воздуха температура может повышаться с высотой. Такое явление называется инверсией температуры. Инверсия возникает при сильном охлаждении земной поверхности в результате излучения, при стекании холодного воздуха в понижения, при нисходящем движении воздуха в свободной атмосфере, т. е. над уровнем трения. Температурные инверсии играют большую роль в циркуляции атмосферы и сказываются на погоде и климате. Суточный и годовой ход температуры воздуха зависят от хода солнечной радиации. Однако наступление максимума и минимума температуры запаздывает по отношению к максимуму и минимуму солнечной радиации. После полудня приток тепла от Солнца начинает уменьшаться, но температура воздуха некоторое время продолжает подниматься, потому что убыль солнечной радиации восполняется излучением тепла с земной поверхности. Ночью понижение температуры продолжается до восхода Солнца в связи с земным излучением тепла (рис. 11). Аналогичная закономерность относится и к годовому ходу температуры. Амплитуда колебаний температуры воздуха меньше, чем земной поверхности, причем с удалением от поверхности амплитуда колебаний естественно уменьшается, а моменты максимума и минимума температуры все больше ибольше запаздывают. Величина суточных колебаний температуры уменьшается с увеличением широты места и с увеличением облачности и осадков. Над водной поверхностью амплитуда значительно меньше, чем над сушей.

Если бы земная поверхность была однородна, а атмосфера и гидросфера неподвижны, то распределение тепла по поверхности определялось бы только поступлением солнечной радиации, и температура воздуха постепенно убывала бы от экватора к полюсам, оставаясь одинаковой на каждой параллели. Такая температура называется солярной.

Действительные температуры зависят от характера поверхности и межширотного обмена тепла и существенно отличаются от солярных Средние годовые температуры на разных широтах в градусах показаны в табл. 1.


Наглядное представление о распределении температуры воздуха на земной поверхности показывают карты изотерм - линий, соединяющих пункты с одинаковыми температурами (рис. 12, 13).

Как видно из карт, изотермы сильно отклоняются от параллелей, что объясняется рядом причин: неодинаковым нагреванием суши и моря, наличием теплых и холодных морских течений, влиянием общей циркуляции атмосферы (например, западным переносом в умеренных широтах), влиянием рельефа (барьерное влияние на движение воздуха горных систем, скопление холодного воздуха в межгорных котловинах и др.), величиной альбедо (например, большим альбедо снежно-ледовой поверхности Антарктиды и Гренландии).

Абсолютный максимум температуры воздуха на Земле наблюдается в Африке (Триполи) - около +58°. Абсолютный минимум отмечен в Антарктиде (-88°).

На основании распределения изотерм выделяют тепловые пояса на земной поверхности. Тропики и полярные круги, ограничивающие пояса с резкой сменой режима освещенности (см. гл. 1), являются в первом приближении и границами смены теплового режима. Так как действительные температуры воздуха отличаются от солярных, то за тепловые пояса принимают характерные изотермы. Такими изотермами являются: годовая 20° (граница резко выраженных сезонов года и малой амплитуды температуры), самого теплого месяца 10° (граница распространения леса) и самого теплого месяца 0° (граница вечного мороза).

Между годовыми изотермами 20° обоих полушарий расположен жаркий пояс, между годовой изотермой 20° и изотермой самого

Post Views: 873

Тепловой режим атмосферы

Локальная температура

Общее изменение температуры в зафиксированной
географической точке, зависящее и от индивидуальных
изменений состояния воздуха, и от адвекции, называют
локальным (местным) изменением.
Любую метеорологическую станцию, не меняющую
своего положения на земной поверхности, можно
рассматривать как такую точку.
Метеорологические приборы - термометры и
термографы, неподвижно помещенные в том или ином
месте, регистрируют именно локальные изменения
температуры воздуха.
Термометр на воздушном шаре, летящем по ветру и,
следовательно, остающемся в одной и той же массе
воздуха, показывает индивидуальное изменение
температуры в этой массе.

Тепловой режим атмосферы

Распределение температуры воздуха в
пространстве и ее изменение во времени
Тепловое состояние атмосферы
определяется:
1. Теплообменом с окружающей средой
(с подстилающей поверхностью, соседними
воздушными массами и космическим пространством).
2. Адиабатическими процессами
(связанными с изменением давления воздуха,
особенно при вертикальном движении)
3. Процессы адвекции
(перенос теплого или холодного воздуха,влияющий на температуру в
данной точке)

Теплообмен

Пути теплообмена
1) Радиационный
при поглощении
воздухом радиации Солнца и земной
поверхности.
2) Теплопроводность.
3)Испарение или конденсация.
4) Образование или плавление льда и снега.

Радиационный путь теплообмена

1. Непосредственное поглощение
солнечной радиации в тропосфере мало;
оно может вызвать повышение
температуры воздуха всего на величину
порядка 0,5° в день.
2. Несколько большее значение имеет
потеря тепла из воздуха путем
длинноволнового излучения.

B = S + D + Ea – Rк – Rд – Eз, кВт/м2
где
S –прямая солнечная радиация на
горизонтальную поверхность;
D – рассеянная солнечная радиация на
горизонтальную поверхность;
Ea – встречное излучение атмосферы;
Rк и Rд - отраженная от подстилающей поверхности
коротко- и длинноволновая радиация;
Eз – длинноволновое излучение подстилающей
поверхности.

Радиационный баланс подстилающей поверхности

B = S + D + Ea– Rк – Rд – Eз, кВт/м2
Принимая во внимание:
Q = S + D Это суммарная радиация;
Rд – очень маленькая величина и ее обычно не
учитывают;
Rк =Q *Aк, где А –альбедо поверхности;
Еэф = Ез – Ea
Получим:
B = Q(1 –Aк) - Еэф

Тепловой баланс подстилающей поверхности

Б = Lт-ж * Мп + Lж-г * Мк + Qа+ Qп-п
где Lт-ж и Lж-г - удельная теплота плавления
и парообразования (конденсации), соответственно;
Мп и Мк -массы воды, участвующие в
соответствующих фазовых переходах;
Qа и Qп-п – поток тепла в атмосферу и через
подстилающую поверхность к нижележащим слоям
почвы или воды.

поверхности и деятельного слоя

Температурный режим подстилающей

Подстилающая поверхность – это
поверхность земли (почва, вода, снег и
т. д.), взаимодейвующая с атмосферой
в процессе тепло‐ и влагообмена.
Деятельный слой – это слой почвы (включая
растительность и снежный покров) или воды,
участвующий в теплообмене с окружающей средой,
на глубину которого распространяются суточные и
годовые колебания температуры.

10. Температурный режим подстилающей поверхности и деятельного слоя

Температурный режим подстилающей
поверхности и деятельного слоя
В почве солнечная радиация, проникая
на глубину в десятые доли мм,
преобразуется в тепло, которое
передается в нижележащие слои путем
молекулярной теплопроводности.
В воде солнечная радиация проникает на
глубины до десятков метров, а перенос
тепла в нижележащие слои происходит в
результате турбулентного
перемешивания, термической
конвекции и испарения

11. Температурный режим подстилающей поверхности и деятельного слоя

Температурный режим подстилающей
поверхности и деятельного слоя
Суточные колебания температуры
распространяются:
в воде – до десятков метров,
в почве – менее метра
Годовые колебания температуры
распространяются:
в воде– до сотен метров,
в почве – на10- 20 метров

12. Температурный режим подстилающей поверхности и деятельного слоя

Температурный режим подстилающей
поверхности и деятельного слоя
Тепло, приходящее днем и летом на поверхность воды, проникает
до значительной глубины и нагревает большую толщу воды.
Температура верхнего слоя и самой поверхности воды
повышается при этом мало.
В почве приходящее тепло распределяется в тонком верхнем
слое, который, таким образом, сильно нагревается.
Ночью и зимой вода теряет тепло из поверхностного слоя, но
взамен него приходит накопленное тепло из нижележащих слоев.
Поэтому температура на поверхности воды понижается
медленно.
На поверхности же почвы температура при отдаче тепла падает
быстро:
тепло, накопленное в тонком верхнем слое, быстро из него уходит
без восполнения снизу.

13. Температурный режим подстилающей поверхности и деятельного слоя

Температурный режим подстилающей
поверхности и деятельного слоя
Днем и летом температура на поверхности почвы выше, чем температура на
поверхности воды; ночью и зимой ниже.
Суточные и годовые колебания температуры на поверхности почвы больше,
притом значительно больше, чем на поверхности воды.
Водный бассейн за теплое время года накапливает в достаточно мощном слое
воды большое количество тепла, которое отдает в атмосферу в холодный
сезон.
Почва в течение теплого сезона отдает по ночам большую часть того тепла,
которое получает днем, и мало накапливает его к зиме.
В средних широтах за теплую половину года в почве накапливается 1,5-3
ккал тепла на каждый квадратный сантиметр поверхности.
В холодное время почва отдает это тепло атмосфере. Величина ±1,5-3
ккал/см2 в год составляет годовой теплооборот почвы.
Под влиянием снежного покрова и растительного летом годовой
теплооборот почвы уменьшается; например, под Ленинградом на 30%.
В тропиках годовой теплооборот меньше, чем в умеренных широтах, так как
там меньше годовые различия в притоке солнечной радиации.

14. Температурный режим подстилающей поверхности и деятельного слоя

Температурный режим подстилающей
поверхности и деятельного слоя
Годовой теплооборот больших водоемов примерно в 20
раз больше по сравнению с годовым теплооборотом
почвы.
Балтийское море отдает воздуху в холодное время 52
ккал/см2 и столько же накапливает в теплое время года.
Годовой теплооборот Черного моря ±48 ккал/см2,
В результате указанных различий температура воздуха над
морем летом ниже, а зимой выше, чем над сушей.

15. Температурный режим подстилающей поверхности и деятельного слоя

Температурный режим подстилающей
поверхности и деятельного слоя
Суша быстро нагревается и быстро
остывает.
Вода медленно нагревается и медленно
остывает
(удельная теплоемкость воды в
3- 4 раза больше почвы)
Растительность уменьшает амплитуду
суточных колебаний температуры
поверхности почвы.
Снежный покров предохраняет почву от
интенсивной потери тепла (зимой почва
меньше промерзает)

16.

Основную роль в создании
температурного режима тропосферы
играет теплообмен
воздуха с земной поверхностью
путем теплопроводности

17. Процессы, влияющие на теплообмен атмосферы

Процессы, влияющие на теплообмен
атмосферы
1).Турбулентность
(перемешивание
воздуха при беспорядочном,
хаотическом движении).
2).Термическая
конвекция
(перенос воздуха в вертикальном
направлении, возникающий при
нагреве нижележащего слоя)

18. Изменения температуры воздуха

Изменения температуры воздуха
1).
Периодичные
2). Непериодичные
Непериодичные изменения
температуры воздуха
Связаны с адвекцией воздушных масс
из других районов Земли
Такие изменения часты и значительны в
умеренных широтах,
связаны они с циклонической
деятельностью, в небольших
масштабах – с местными ветрами.

19. Периодичные изменения температуры воздуха

Суточные и годовые изменения температуры носят
периодический характер.
Суточные изменения
Температура воздуха меняется в
суточном ходе вслед за температурой
земной поверхности, от которой
происходит нагрев воздуха

20. Суточный ход температуры

Суточный ход температуры
Многолетние кривые суточного хода
температуры это плавные кривые,
похожие на синусоиды.
В климатологии рассматривается
суточный ход температуры воздуха,
осредненный за многолетний период.

21. на поверхности почвы (1) и в воздухе на высоте 2м (2). Москва (МГУ)

Средний суточный ход температуры на поверхности
почвы (1) и
в воздухе на высоте 2м (2). Москва (МГУ)

22. Средний суточный ход температуры

Средний суточный ход температуры
Температура на поверхности почвы имеет суточный ход.
Минимум ее наблюдается примерно через полчаса после
восхода солнца.
К этому времени радиационный баланс поверхности почвы
становится равным нулю - отдача тепла из верхнею слоя
почвы эффективным излучением уравновешивается
возросшим притоком суммарной радиации.
Нерадиационный же обмен тепла в это время незначителен.

23. Средний суточный ход температуры

Средний суточный ход температуры
Температура на поверхности почвы растет до 13- 14 часов,
когда достигает максимума в суточном ходе.
После этого начинается падение температуры.
Радиационный баланс в послеполуденные часы, правда,
остается положительным; однако
отдача тепла в дневные часы из верхнего слоя почвы в
атмосферу происходит не только путем эффективного
излучения, но и путем возросшей теплопроводности, а
также при увеличившемся испарении воды.
Продолжается и передача тепла в глубь почвы.
Поэтому температура на поверхности почвы и падает
с 13-14 часов до утреннего минимума.

24.

25. Температура поверхности почвы

Максимальные температуры на поверхности почвы обычно выше,
чем в воздухе на высоте метеорологической будки. Это понятно:
днем солнечная радиация прежде всего нагревает почву, а уже
от нее нагревается воздух.
В Московской области летом на поверхности обнаженной почвы
наблюдаются температуры до +55°, а в пустынях - даже до +80°.
Ночные минимумы температуры, наоборот, бывают на
поверхности почвы ниже, чем в воздухе,
так как, прежде всего, почва выхолаживается эффективным
излучением, а уже от нее охлаждается воздух.
Зимой в Московской области ночные температуры на поверхности (в это время
покрытой снегом) могут падать ниже -50°, летом (кроме июля) - до нуля. На
снежной поверхности во внутренних районах Антарктиды даже средняя
месячная температура в июне около -70°, а в отдельных случаях она может
падать до -90°.

26. Суточная амплитуда температуры

Суточная амплитуда температуры
Это – разность между максимальной
и минимальной температурой за сутки.
Суточная амплитуда температуры
воздуха меняется:
по сезонам года,
по широте,
в зависимости от характера
подстилающей поверхности,
в зависимости от рельефа местности.

27. Изменения суточной амплитуды температуры (Асут)

Изменения

1. Зимой Асут меньше чем летом
2. С увеличением широты А сут. убывает:
на широте 20 - 30°
на суше А сут.=12° С
на широте 60° А сут. = 6° С
3. Открытые пространства
характеризуются большей А сут. :
для степей и пустынь средняя
Асут =15- 20°С (до 30° С),

28. Изменения суточной амплитуды температуры (Асут)

Изменения
суточной амплитуды температуры (Асут)
4. Близость водных бассейнов
уменьшает А сут.
5.На выпуклых формах рельефа
(вершины и склоны гор) А сут. меньше,
чем на равнине
6 . В вогнутых формах рельефа
(котловины, долины, овраги и др. А сут. больше.

29. Влияние почвенного покрова на температуру поверхности почвы

Растительный покров уменьшает охлаждение почвы ночью.
Ночное излучение происходит при этом преимущественно с
поверхности самой растительности, которая и будет наиболее
охлаждаться.
Почва же под растительным покровом сохраняет более высокую
температуру.
Однако днем растительность препятствует радиационному
нагреванию почвы.
Суточная амплитуда температуры под растительным покровом,
таким образом, уменьшена, а средняя суточная температура
понижена.
Итак, растительный покров в общем охлаждает почву.
В Ленинградской области поверхность почвы под полевыми
культурами может оказаться в дневные часы на 15° холоднее, чем
почва под паром. В среднем же за сутки она холоднее
обнаженной почвы на 6°, и даже на глубине 5-10 см остается
разница в 3-4°.

30. Влияние почвенного покрова на температуру поверхности почвы

Снежный покров предохраняет почву зимой от чрезмерной потери тепла.
Излучение идет с поверхности самого снежного покрова, а почва под ним
остается более теплой, чем обнаженная почва. При этом суточная амплитуда
температуры на поверхности почвы под снегом резко уменьшается.
В средней полосе Европейской территории России при снежном покрове высотой
40-50 см температура поверхности почвы под ним на 6-7° выше, чем
температура обнаженной почвы, и на 10° выше, чем температура на
поверхности самого снежного покрова.
Зимнее промерзание почвы под снегом достигает глубин порядка 40 см, а без
снега может распространяться до глубин более 100 см.
Итак, растительный покров летом снижает температуру на поверхности почвы, а
снежный покров зимой, напротив, ее повышает.
Совместное действие растительного покрова летом и снежного зимой уменьшает
годовую амплитуду температуры на поверхности почвы; это уменьшение -
порядка 10° в сравнении с обнаженной почвой.

31. Распространение тепла в глубь почвы

Чем больше плотность и влажность почвы, тем
лучше она проводит тепло, тем быстрее
распространяются в глубину и тем глубже
проникают колебания температуры.
Независимо от типа почвы, период колебаний
температуры не изменяется с глубиной.
Это значит, что не только на поверхности, но и на
глубинах остается суточный ход с периодом в 24
часа между каждыми двумя последовательными
максимумами или минимумами
и годовой ход с периодом в 12 месяцев.

32. Распространение тепла в глубь почвы

Аамплитуды колебаний с глубиной уменьшаются.
Возрастание глубины в арифметической прогрессии
приводит к уменьшению амплитуды в прогрессии
геометрической.
Так, если на поверхности суточная амплитуда равна 30°, а
на глубине 20 см 5°, то на глубине 40 см она будет уже
менее 1° .
На некоторой сравнительно небольшой глубине суточная
амплитуда убывает настолько, что становится
практически равной нулю.
На этой глубине (около 70-100 см, в разных случаях
разной) начинается слой постоянной суточной
температуры.

33. Суточный ход температуры в почве на разных глубинах от 1 до 80 см. Павловск, май.

34. Годовые колебания температуры

Амплитуда годовых колебаний температуры уменьшается с
глубиной.
Однако годовые колебания распространяются до большей
глубины, что вполне понятно: для их распространения
имеется больше времени.
Амплитуды годовых колебаний убывают практически до
нуля на глубине около 30 м в полярных широтах,
около 15-20 м в средних широтах,
около 10 м в тропиках
(где и на поверхности почвы годовые амплитуды меньше,
чем в средних широтах).
На этих глубинах начинается, слой постоянной годовой
температуры.

35.

Сроки наступления максимальных и минимальных температур
как в суточном, так и в годовом ходе запаздывают с глубиной
пропорционально ей.
Это понятно, так как требуется время для распространения тепла в
глубину.
Суточные экстремумы на каждые 10 см глубины запаздывают на
2,5-3,5 часа.
Это значит, что на глубине, например, 50 см суточный максимум
наблюдается уже после полуночи.
Годовые максимумы и минимумы запаздывают на 20-30 дней на
каждый метр глубины.
Так, в Калининграде на глубине 5 м минимум температуры
наблюдается не в январе, как на поверхности почвы, а в мае,
максимум - не в июле, а в октябре

36. Годовой ход температуры в почве на разных глубинах от 3 до 753 см в Калининграде.

37. Распределение температуры в почве по вертикали в разные сезоны

Летом температура от поверхности почвы в глубину падает.
Зимой растет.
Весной она сначала растет, а потом убывает.
Осенью сначала убывает, а затем растет.
Изменения температуры в почве с глубиной в течение суток или года можно представить с
помощью графика изоплет.
По оси абсцисс откладывается время в часах или в месяцах года,
По оси ординат - глубина в почве.
Каждой точке на графике соответствуют определенное время и определенная глубина. На
график наносят средние значения температуры на разных глубинах в разные часы или
месяцы.
Проведя затем изолинии, соединяющие точки с равными температурами,
например через каждый градус или через каждые 2 градуса, получим семейство
термоизоплет.
По такому графику можно определить значение температуры для любого момента суток
или дня года и для любой глубины в пределах графика.

38. Изоплеты годового хода темпера­туры в почве в Тбилиси

Изоплеты годового хода температуры в почве в
Тбилиси

39. Суточный и годовой ход температуры на поверхности водоемов и в верхних слоях воды

Нагревание, и охлаждение распространяется в водоемах на более
толстый слой, чем в почве, и вдобавок обладающий большей
теплоемкостью, чем почва.
Вследствие этого изменения температуры на поверхности воды
очень малы.
Амплитуда их - порядка десятых долей градуса: около 0,1-
0,2° в умеренных широтах,
около 0,5° в тропиках.
В южных морях СССР суточная амплитуда температуры больше:
1-2°;
на поверхности больших озер в умеренных широтах еще больше:
2-5°.
Суточные колебания температуры воды на поверхности океана
имеют максимум около 15-16 часов и минимум через 2-3 часа
после восхода солнца.

40. Суточный ход температуры на поверхности моря (сплошная кривая) и на высоте 6 м в воздухе (прерывистая кривая) в тропической

Атлантике

41. Суточный и годовой ход температуры на поверхности водоемов и в верхних слоях воды

Годовая амплитуда колебаний температуры на поверхности
океана значительно больше, чем суточная.
Но она меньше, чем годовая амплитуда на поверхности почвы.
В тропиках она порядка 2-3°, под 40° с. ш. около 10°, а под 40° ю.
ш. около 5°.
На внутренних морях и глубоководных озерах возможны
значительно большие годовые амплитуды - до 20° и более.
Как суточные, так и годовые колебания распространяются в воде
(также, конечно, с запозданием) до больших, глубин, чем в почве.
Суточные колебания обнаруживаются в море на глубинах до 15-
20 м и более, а годовые - до 150-400 м.

42. Суточный ход температуры воздуха у земной поверхности

Температура воздуха меняется в суточном ходе
вслед за температурой земной поверхности.
Поскольку воздух нагревается и охлаждается от
земной поверхности, амплитуда суточного хода
температуры в метеорологической будке меньше,
чем на поверхности почвы, в среднем примерно
на одну треть.

43. Суточный ход температуры воздуха у земной поверхности

Рост температуры воздуха начинается вместе с ростом
температуры почвы (минут на 15 позже) утром,
после восхода солнца. В 13-14 часов температура почвы,
начинает понижаться.
В 14-15 часов она уравнивается с температурой воздуха;
с этого времени при дальнейшем падении температуры
почвы начинает падать и температура воздуха.
Таким образом, минимум в суточном ходе температуры
воздуха у земной поверхности приходится на время
вскоре после восхода солнца,
а максимум - на 14-15 часов.

44. Суточный ход температуры воздуха у земной поверхности

Суточный ход температуры воздуха достаточно правильно
проявляется лишь в условиях устойчивой ясной погоды.
Еще более закономерным представляется он в среднем из большого
числа наблюдений: многолетние кривые суточного хода
температуры- плавные кривые, похожие на синусоиды.
Но в отдельные дни суточный ход температуры воздуха может
быть очень неправильным.
Это зависит от изменений облачности, меняющих радиационные
условия на земной поверхности, а также от адвекции, т. е. от
притока воздушных масс с другой температурой.
В результате этих причин минимум температуры может сместиться
даже на дневные часы, а максимум - на ночь.
Суточный ход температуры может вообще исчезнуть или кривая
суточного изменения примет сложную и неправильную форму.

45. Суточный ход температуры воздуха у земной поверхности

Регулярный суточный ход перекрывается или маскируется
непериодическими изменениями температуры.
Например, в Хельсинки в январе имеется 24%
вероятности, что суточный максимум температуры
придется на время между полуночью и часом ночи, и
только 13% вероятности, что он придется на
промежуток времени от 12 до 14 часов.
Даже в тропиках, где непериодические изменения температуры слабее, чем в умеренных широтах, максимум
температуры приходится на послеполуденные часы
только в 50% всех случаев.

46. Суточный ход температуры воздуха у земной поверхности

В климатологии обычно рассматривается суточный ход
температуры воздуха, осредненный за многолетний период.
В таком осредненном суточном ходе непериодические изменения
температуры, приходящиеся более или менее равномерно на
все часы суток, взаимно погашаются.
Вследствие этого многолетняя кривая суточного хода имеет
простой характер, близкий к синусоидальному.
Для примера рассмотрим суточный ход температуры воздуха в
Москве в январе и в июле, вычисленный по многолетним
данным.
Вычислялась многолетняя средняя температура для каждого часа
январских или июльских суток, а затем по полученным средним
часовым значениям были построены многолетние кривые
суточного хода для января и июля.

47. Суточный ход температуры воздуха в Москве в январе и в июле. Цифрами нанесены средние месячные температуры января и июля.

48. Суточные изменения амплитуды температуры воздуха

Суточная амплитуда температуры воздуха меняется по сезонам,
по широте, а также в зависимости от характера почвы и
рельефа местности.
Зимой она меньше, чем летом, так же как и амплитуда
температуры подстилающей поверхности.
С увеличением широты суточная амплитуда температуры
воздуха убывает, так как убывает полуденная высота солнца
над горизонтом.
Под широтами 20-30° на суше средняя за год суточная
амплитуда температуры около 12°,
под широтой 60° около 6°,
под широтой 70° только 3°.
В самых высоких широтах, где солнце не восходит или не
заходит много дней подряд, регулярного суточного хода
температуры нет вовсе.

49. Влияние характера почвы и почвенного покрова

Чем больше суточная амплитуда температуры самой
поверхности почвы, тем больше и суточная амплитуда
температуры воздуха над нею.
В степях и пустынях средняя суточная амплитуда
достигает 15-20°, иногда 30°.
Над обильным растительным покровом она меньше.
На суточной амплитуде сказывается и близость водных
бассейнов: в приморских местностях она понижена.

50. Влияние рельефа

На выпуклых формах рельефа местности (на вершинах и на
склонах гор и холмов) суточная амплитуда температуры
воздуха уменьшена в сравнении с равнинной местностью.
В вогнутых формах рельефа (в долинах, оврагах и лощинах)
увеличена.
Причина заключается в том, что на выпуклых формах рельефа
воздух имеет уменьшенную площадь соприкосновения с
подстилающей поверхностью и быстро сносится с нее, заменяясь
новыми массами воздуха.
В вогнутых же формах рельефа воздух сильнее нагревается от
поверхности и больше застаивается в дневные часы, а ночью
сильнее охлаждается и стекает по склонам вниз. Но в узких
ущельях, где и приток радиации, и эффективное излучение
уменьшены, суточные амплитуды меньше, чем в широких
долинах

51. Влияние морей и океанов

Малые суточные амплитуды температуры на поверхности
моря имеют следствием и малые суточные амплитуды
температуры воздуха над морем.
Однако эти последние все же выше, чем суточные
амплитуды на самой поверхности моря.
Суточные амплитуды на поверхности открытого океана
измеряются лишь десятыми долями градуса;
но в нижнем слое воздуха над океаном они доходят до 1 -
1,5°),
а над внутренними морями и больше.
Амплитуды температуры в воздухе повышены потому, что на
них сказывается влияние адвекции воздушных масс.
Также играет роль и непосредственное поглощение
солнечной радиации нижними слоями воздуха днем и
излучение из них ночью.

52. Изменение суточной амплитуды температуры с высотой

Суточные колебания температуры в атмосфере распространяются на
более мощный слой, чем суточные колебания в океане.
На высоте 300 м над сушей амплитуда суточного хода температуры
около 50% амплитуды у земной поверхности, а крайние значения
температуры наступают на 1,5-2 часа позже.
На высоте 1 км суточная амплитуда температуры над сушей 1-2°,
на высоте 2-5 км 0,5-1°, а дневной максимум смещается на
вечер.
Над морем суточная амплитуда температуры несколько растет с
высотой в нижних километрах, но все же остается малой.
Небольшие суточные колебания температуры обнаруживаются даже
в верхней тропосфере и в нижней стратосфере.
Но там они определяются уже процессами поглощения и излучения
радиации воздухом, а не влияниями земной поверхности.

53. Влияние рельефа местности

В горах, где влияние подстилающей поверхности больше, чем на
соответствующих высотах в свободной атмосфере, суточная
амплитуда убывает с высотой медленнее.
На отдельных горных вершинах, на высотах 3000 м и больше,
суточная амплитуда еще может равняться 3-4°.
На высоких обширных плато суточная амплитуда температуры
воздуха того же порядка, что и в низинах: поглощенная радиация
и эффективное излучение здесь велики, так же как и поверхность
соприкосновения воздуха с почвой.
Суточная амплитуда температуры воздуха на станции Мургаб на
Памире в среднем годовом 15,5°, тогда как в Ташкенте 12°.

54.

55. Излучение земной поверхности

Верхние слои почвы и воды, снежный
покров и растительность сами излучают
длинноволновую радиацию; эту земную
радиацию чаще называют собственным
излучением земной поверхности.

56. Излучение земной поверхности

Абсолютные температуры земной поверхности
заключаются между 180 и 350°.
При таких температурах испускаемая радиация
практически заключается в пределах
4-120 мк,
а максимум ее энергии приходится на длины волн
10-15 мк.
Следовательно, вся эта радиация
инфракрасная, не воспринимаемая глазом.

57.

58. Атмосферная радиация

Атмосфера нагревается, поглощая как солнечную радиацию
(хотя в сравнительно небольшой доле, около 15% всего ее
количества, приходящего к Земле), так и собственное
излучение земной поверхности.
Кроме того, она получает тепло от земной поверхности
путем теплопроводности, а также при испарении и
последующей конденсации водяного пара.
Будучи нагретой, атмосфера излучает сама.
Так же как и земная поверхность, она излучает невидимую
инфракрасную радиацию примерно в том же диапазоне
длин волн.

59. Встречное излучение

Большая часть (70%) атмосферной радиации приходит к
земной поверхности, остальная часть уходит в мировое
пространство.
Атмосферную радиацию, приходящую к земной поверхности, называют встречным излучением
Встречным потому, что оно направлено навстречу
собственному излучению земной поверхности.
Земная поверхность поглощает это встречное излучение
почти целиком (на 90-99%). Таким образом, оно является
для земной поверхности важным источником тепла в
дополнение к поглощенной солнечной радиации.

60. Встречное излучение

Встречное излучение возрастает с увеличением облачности,
поскольку облака сами сильно излучают.
Для равнинных станций умеренных широт средняя
интенсивность встречного излучения (на каждый
квадратный сантиметр площади горизонтальной земной
поверхности в одну минуту)
порядка 0,3-0,4 кал,
на горных станциях - порядка 0,1-0,2 кал.
Это уменьшение встречного излучения с высотой
объясняется уменьшением содержания водяного пара.
Наибольшее встречное излучение - у экватора, где
атмосфера наиболее нагрета и богата водяным паром.
У экватора 0,5-0,6 кал/см2 мин в среднем,
В полярных широтах до 0,3 кал/см2 мин.

61. Встречное излучение

Основной субстанцией в атмосфере, поглощающей
земное излучение и посылающей встречное
излучение, является водяной пар.
Он поглощает инфракрасную радиацию в большой
области спектра - от 4,5 до 80 мк, за исключением
интервала между 8,5 и 11 мк.
При среднем содержании водяного пара в атмосфере
радиация с длинами волн от 5,5 до 7,0 мк и более
поглощается почти полностью.
Только в интервале 8,5-11 мк земное излучение
проходит сквозь атмосферу в мировое пространство.

62.

63.

64. Эффективное излучение

Встречное излучение всегда несколько меньше земного.
Ночью, когда солнечной радиации нет, к земной поверхности приходит
только встречное излучение.
Земная поверхность теряет тепло за счет положительной разности между
собственным и встречным излучением.
Разность между собственным излучением земной
поверхности и встречным излучением атмосферы
называют эффективным излучением

65. Эффективное излучение

Эффективное излучение представляет собой
чистую потерю лучистой энергии, а
следовательно, и тепла с земной поверхности
ночью

66. Эффективное излучение

С возрастанием облачности, увеличивающей
встречное излучение, эффективное излучение
убывает.
В облачную погоду эффективное излучение
гораздо меньше, чем в ясную;
В облачную погоду меньше и ночное
охлаждение земной поверхности.

67. Эффективное излучение

Эффективное излучение, конечно,
существует и в дневные часы.
Но днем оно перекрывается или частично
компенсируется поглощенной солнечной
радиацией. Поэтому земная поверхность
днем теплее, чем ночью, вследствие чего,
между прочим, и эффективное излучение
днем больше.

68. Эффективное излучение

Поглощая земное излучение и посылая встречное
излучение к земной поверхности, атмосфера тем
самым уменьшает охлаждение последней в
ночное время суток.
Днем же она мало препятствует нагреванию земной
поверхности солнечной радиацией.
Это влияние атмосферы на тепловой режим земной
поверхности носит название тепличного эффекта
вследствие внешней аналогии с действием стекол
теплицы.

69. Эффективное излучение

В общем земная поверхность в средних
широтах теряет эффективным
излучением примерно половину того
количества тепла, которое она получает
от поглощенной радиации.

70. Радиационный баланс земной поверхности

Разность между поглощенной радиацией и Радиационный баланс земной поверхностиПри наличии снежного покрова радиационный баланс
переходит к положительным значениям только при высоте
солнца около 20-25°, так как при большом альбедо снега
поглощение им суммарной радиации мало.
Днем радиационный баланс растет с увеличением высоты
солнца и убывает с ее уменьшением.
В ночные часы, когда суммарная радиация отсутствует,
отрицательный радиационный баланс равен
эффективному излучению
и потому меняется в течение ночи мало, если только
условия облачности остаются одинаковыми.

76. Радиационный баланс земной поверхности

Средние полуденные значения
радиационного баланса в Москве:
летом при ясном небе – 0,51 кВт/м2,
зимой при ясном небе – 0,03 кВт/м2
летом при средних условиях
облачности – 0,3 кВт/м2,
зимой при средних условиях
облачности – около 0 кВт/м2.

77.

78.

79. Радиационный баланс земной поверхности

Радиационный баланс определяется балансомером.
В нем одна зачерненная приемная пластинка
направлена вверх, к небу,
а другая - вниз, к земной поверхности.
Разница в нагревании пластинок позволяет
определить величину радиационного баланса.
Ночью она равна величине эффективного
излучения.

80. Излучение в мировое пространство

Излучение земной поверхности в большей части
поглощается в атмосфере.
Лишь в интервале длин волн 8,5-11 мк проходит сквозь
атмосферу в мировое пространство.
Это уходящее вовне количество составляет всего 10%, от
притока солнечной радиации на границу атмосферы.
Но, кроме того, сама атмосфера излучает в мировое
пространство около 55% энергии от поступающей
солнечной радиации,
т. е. в несколько раз больше, чем земная поверхность.

81. Излучение в мировое пространство

Излучение нижних слоев атмосферы поглощается в
вышележащих ее слоях.
Но, по мере удаления от земной поверхности, содержание
водяного пара, основного поглотителя радиации,
уменьшается, и нужен все более толстый слой воздуха,
чтобы поглотить излучение, поступающее от
нижележащих слоев.
Начиная с некоторой высоты водяного пара вообще
недостаточно для того, чтобы поглотить все излучение,
идущее снизу, и из этих верхних слоев часть
атмосферного излучения будет уходить в мировое
пространство.
Подсчеты показывают, что наиболее сильно излучающие в
пространство слои атмосферы лежат на высотах 6-10 км.

82. Излучение в мировое пространство

Длинноволновое излучение земной поверхности и
атмосферы, уходящее в космос, называется
уходящей радиацией.
Оно составляет около 65 единиц, если за 100 единиц принять
приток солнечной радиации в атмосферу. Вместе с
отраженной и рассеянной коротковолновой солнечной
радиацией, выходящей за пределы атмосферы в
количестве около 35 единиц (планетарное альбедо Земли),
эта уходящая радиация компенсирует приток солнечной
радиации к Земле.
Таким образом, Земля вместе с атмосферой теряет
столько же радиации, сколько и получает, т. е.
находится в состоянии лучистого (радиационного)
равновесия.

83. Радиационный баланс

Qприход = Q расход
Qприход= I*Sпроекции*(1-А)
σ
1/4
Т =
Q расход= Sземли* *Т4
T=
0
252 K

84. Физические константы

I – Солнечная постоянная - 1378 Вт/м2
R(Земли) – 6367 км.
А –среднее альбедо Земли - 0,33.
Σ –постоянная Стефана-Больцмана -5,67*10 -8
Вт/м2К4

B - рад. Баланс, Р- тепло полученное при молек. теплообмене с поверхн. Земли. Len – получ от конденсац. влага.

Тепловой баланс атмосферы:

B - рад. Баланс, Р- затраты тепла на молек. теплообмен с нижними слоями атмосферы. Gn - затраты тепла на молек. теплообмен с нижними слоями грунта Len – затраты тепла на испарение влаги.

Остальное по карте

10)Тепловой режим подстилающей поверхности:

Поверхность которая непосредственно нагревается солнечными лучами и отдаёт тепло нижележащим слоям почвы и воздуху называют деятельный поверхностью.

Температура деятельной поверхности определяется тепловым балансом.

Суточном ходе температур деятельной поверхности максимально поступает 13 часов, минимально температура около момента восхода солнца. максим. и миним. температуры в течении суток могут смещаться из-за облачности, влажности почвы и растительногопокрова.

Значения тепрературы зависит:

  1. От географической широты местности
  2. От времени года
  3. О облачности
  4. От тепловых свойств поверхности
  5. От растительности
  6. От экспозиции склонов

В годовом ходе температур максимально в средних и высоких шротах в северном полушарии наблюдается в июле, а минимальные в январе. В низких широтах годовые амплитуды колебания температур небольшие.

Распределение температуры в глубь зависит от теплоёмкости и её теплопроводности на передачу тепла от слоя к слою требуется время, на каждые 10 метров последовательном нагревании слоёв каждый слой поглощает часть тепла, поэтому чем глубже слой тем меньше тепла он получает, и тем меньше в нём колебание температур в среднем на глубине 1 м. суточные колебания температу преклащаются, годовые колебания в низких широтах заканчиваются на глубине 5-10 м. в средних широтах до 20 м. в высоких 25 м. Слой почвы на которм практически заканчиваются колебания температур наз. Слоем постоянных температур, слой грунта который расположен между деятельной поверхностью и слоем постоянных температурназывают деятельным слоем.

Особенностями распр. Температуры в земле занимался Фурье, он сформулировал законы распространения тепла в почвеили «законы Фурье»:

1))).Чем больше плотность и влажность почвы тем лучше она проводит тепло, тем быстрее быстрее распр в глубину и тем глубже проникает тепло. Температура не зависит от типов почв. Период колебания с глубиной не изменяется

2))). Возрастание глубины в арифметической прогрессии приводит к уменьшению амплитуды температур в прогрессии геометрической.

3)))Сроки наступления максимальных и минимальных температур как в суточном так и в годовом ходе температур затухают с глубиной пропорционально увеличению глубины.

11.Нагревание атмосферы. Адвекция.. Основным источником жизни и многих природных процессов на Земле является лучистая энергия Солнца, или энергия солнечной радиации. Каждую минуту на Землю поступает 2,4 х 10 18 кал энергии Солнца, но это лишь одна двухмиллиардная ее часть. Различают прямую радиацию (непосредственно приходящую от Солнца) и рассеянную (излучаемую частицами воздуха по всем направлениям). Их совокупность, поступающую на горизонтальную поверхность, называют суммарной радиацией. Годовая величина суммарной радиации зависит прежде всего от угла падения на земную поверхность солнечных лучей (который определяется географической широтой), от прозрачности атмосферы и продолжительности освещения. В целом суммарная радиация уменьшается от экваториально-тропических широт к полюсам. Она максимальна (около 850 Дж/см 2 в год, или 200 ккал/см 2 в год) - в тропических пустынях, где прямая солнечная радиация из-за большой высоты Солнца и безоблачного неба наиболее интенсивная.

Солнце в основном нагревает поверхность Земли, от неё нагревается воздух. Тепло передается воздуху путем лучеиспускания и теплопроводности. Нагретый от земной поверхности воздух расширяется и поднимается вверх - так образуются конвективные токи. Способность земной поверхности отражать солнечные лучи называется альбедо: снег отражает до 90 % солнечной радиации, песок - 35 %, а влажная поверхность почвы около 5 %. Та часть суммарной радиации, которая остается после затраты ее на отражение и на тепловое излучение от земной поверхности, называется радиационным балансом (остаточной радиацией). Радиационный баланс закономерно уменьшается от экватора (350 Дж/см 2 в год, или около 80 ккал/см 2 в год) к полюсам, где он близок к нулю. От экватора до субтропиков (сороковые широты) радиационный баланс в течение всего года положительный, в умеренных широтах зимой - отрицательный. Температура воздуха также убывает к полюсам, что хорошо отражают изотермы - линии, соединяющие точки с одинаковой температурой. Изотермы самого теплого месяца являются границами семи тепловых поясов. Жаркий пояс ограничивают изотермы +20 °c до +10 °c простираются два умеренных полюса, от +10 °c до 0 °c - холодные. Две приполярные области мороза оконтуриваются нулевой изотермой - здесь льды и снега практически не тают. До 80 км простирается мезосфера, в которой плотность воздуха в 200 раз меньше, чем у поверхности, а температура вновь понижается с высотой (до -90°). Далее следует состоящая из заряженных частиц ионосфера (здесь возникают полярные сияния), другое свое название - термосфера - эта оболочка получила из-за чрезвычайно высоких температур (до 1500°). Слои выше 450 км некоторые ученые называют экзосферой, отсюда частицы ускользают в космическое пространство.

Атмосфера предохраняет Землю от чрезмерного перегревания днем и охлаждения ночью, защищает все живое на Земле от ультрафиолетовой солнечной радиации, метеоритов, корпускулярных потоков и космических лучей.

Адвекция – перемещение воздуха в горизонтальном направлении и перенос вместе с ним его свойств: температуры, влажности и других. В этом смысле говорят, например, об адвекции тепла и холода. Адвекция холодных и тёплых, сухих и влажных воздушных масс играет важную роль в метеорологических процессах и тем самым влияет на состояние погоды.

Конве́кция - явление переноса теплоты в жидкостях, газах или сыпучих средах потоками самого вещества (неважно, вынужденно или самопроизвольно). Существует т. н. естественная конвекция , которая возникает в веществе самопроизвольно при его неравномерном нагревании в поле тяготения. При такой конвекции, нижние слои вещества нагреваются, становятся легче и всплывают вверх, а верхние слои, наоборот, остывают, становятся тяжелее и погружаются вниз, после чего процесс повторяется снова и снова. При некоторых условиях процесс перемешивания самоорганизуется в структуру отдельных вихрей и получается более или менее правильная решётка из конвекционных ячеек.

Различают ламинарную и турбулентную конвекцию.

Естественной конвекции обязаны многие атмосферные явления, в том числе, образование облаков. Благодаря тому же явлению движутся тектонические плиты. Конвекция ответственна за появление гранул на Солнце.

Адиабатический процесс- изменение термодинамического состояния воздуха, протекающее адиабатически (изэнтро-пически), т. е. без обмена теплом между ним и средой (земной поверхностью, космосом, другими массами воздуха).

12. Инверсии температуры в атмосфере, повышение температуры воздуха с высотой вместо обычного для тропосферы её убывания. Инверсии температуры встречаются и у земной поверхности (приземные Инверсии температуры ), и в свободной атмосфере. Приземные Инверсии температуры чаще всего образуются в безветренные ночи (зимой иногда и днём) в результате интенсивного излучения тепла земной поверхностью, что приводит к охлаждению как её самой, так и прилегающего слоя воздуха. Толщина приземных Инверсии температуры составляет десятки - сотни метров. Увеличение температуры в инверсионном слое колеблется от десятых долей градусов до 15-20 °С и более. Наиболее мощны зимние приземные Инверсии температуры в Восточной Сибири и в Антарктиде.
В тропосфере, выше приземного слоя, Инверсии температуры чаще образуются в антициклонах благодаря оседанию воздуха, сопровождающемуся его сжатием, а следовательно - нагреванием (инверсии оседания). В зонах фронтов атмосферных Инверсии температуры создаются вследствие натекания тёплого воздуха на нижерасположенный холодный. В верхних слоях атмосферы (стратосфере, мезосфере, термосфере) Инверсии температуры возникают из-за сильного поглощения солнечной радиации. Так, на высотах от 20-30 до 50-60 км расположена Инверсии температуры , связанная с поглощением ультрафиолетового излучения Солнца озоном. У основания этого слоя температура равна от - 50 до - 70°C, у его верхней границы она поднимается до - 10 - + 10 °С. Мощная Инверсии температуры , начинающаяся на высоте 80-90 км и простирающаяся на сотни км вверх, также обусловлена поглощением солнечной радиации.
Инверсии температуры являются задерживающими слоями в атмосфере; они препятствуют развитию вертикальных движений воздуха, вследствие чего под ними накапливаются водяной пар, пыль, ядра конденсации. Это благоприятствует образованию слоев дымки, тумана, облаков. Вследствие аномальной рефракции света в Инверсии температуры иногда возникают миражи . В Инверсии температуры образуются также атмосферные волноводы ,благоприятствующие дальнему распространению радиоволн .

13.Типы годового хода температуры.Г одовой ход температуры воздуха в разных географических зонах разнообразен. По величине амплитуды и по времени наступления экстремальных температур выделяют четыре типа годового хода температуры воздуха.

Экваториальный тип. В экваториальной зоне в году наблюдаются два

максимума температуры - после весеннего и осеннего равноденствия, когда

солнце над экватором в полдень находится в зените, и два минимума - после

зимнего и летнего солнцестояния, когда солнце находится на наименьшей

высоте. Амплитуды годового хода здесь малы, что объясняется малым

изменением притока тепла в течение года. Над океанами амплитуды составляют

около 1 °С, а над континентами 5-10 °С.

Тропический тип. В тропических широтах наблюдается простой годовой ход

температуры воздуха с максимумом после летнего и минимумом после зимнего

солнцестояния. Амплитуды годового хода по мере удаления от экватора

увеличиваются зимой. Средняя амплитуда годового хода над материками

составляет 10 - 20° С, над океанами 5 - 10° С.

Тип умеренного пояса. В умеренных широтах также отмечается годовой ход

температуры с максимумом после летнего и минимумом после зимнего

солнцестояния. Над материками северного полушария максимальная

среднемесячная температура наблюдается в июле, над морями и побережьями - в

августе. Годовые амплитуды увеличиваются с широтой. Над океанами и

побережьями они в среднем составляют 10-15° С, а на широте 60° достигают

Полярный тип. Полярные районы характеризуются продолжительной холодной

зимой и сравнительно коротким прохладным летом. Годовые амплитуды над

океаном и побережьями полярных морей составляют 25-40° С, а на суше

превышают 65° С. Максимум температуры наблюдается в августе, минимум - в

Рассмотренные типы годового хода температуры воздуха выявляются из

многолетних данных и представляют собой правильные периодические колебания.

В отдельные годы под влиянием вторжений теплых и холодных масс возникают

отклонения от приведенных типов.

14. Хар-ка влажности воздуха.

Влажность воздуха, содержание в воздухе водяного пара; одна из наиболее существенных характеристик погоды и климата. В. в. имеет большое значение при некоторых технологических процессах, лечении ряда болезней, хранении произведений искусства, книг и т.д.

Характеристиками В. в. служат: 1) упругость (или парциальное давление) е водяного пара, выражаемая в н/м 2 (в мм рт. ст. или в мб ), 2) абсолютная влажность а - количество водяного пара в г/м 3 ; 3) удельная влажность q - количество водяного пара в г на кг влажного воздуха; 4) отношение смеси w , определяемое количеством водяного пара в г на кг сухого воздуха; 5) относительная влажность r - отношение упругости е водяного пара, содержащегося в воздухе, к максимальной упругости Е водяного пара, насыщающего пространство над плоской поверхностью чистой воды (упругости насыщения) при данной температуре, выраженное в %; 6) дефицит влажности d - разность между максимальной и фактической упругостью водяного пара при данной температуре и давлении; 7) точка росы τ - температура, которую примет воздух, если охладить его изобарически (при постоянном давлении) до состояния насыщения находящегося в нём водяного пара.

В. в. земной атмосферы колеблется в широких пределах. Так, у земной поверхности содержание водяного пара в воздухе составляет в среднем от 0,2% по объёму в высоких широтах до 2,5% в тропиках. Соответственно упругость пара е в полярных широтах зимой меньше 1 мб (иногда лишь сотые доли мб ) и летом ниже 5 мб ; в тропиках же она возрастает до 30 мб , а иногда и больше. В субтропических пустынях е понижена до 5-10 мб (1 мб = 10 2 ·н/м 2). Относительная влажность r очень высока в экваториальной зоне (среднегодовая до 85% и более), а также в полярных широтах и зимой внутри материков средних широт - здесь за счёт низкой температуры воздуха. Летом высокой относительной влажностью характеризуются муссонные районы (Индия - 75-80%). Низкие значения r наблюдаются в субтропических и тропических пустынях и зимой в муссонных районах (до 50% и ниже). С высотой r , а и q быстро убывают. На высоте 1,5-2 км упругость пара в среднем вдвое меньше, чем у земной поверхности. На тропосферу (нижние 10-15 км ) приходится 99% водяного пара атмосферы. В среднем над каждым м 2 земной поверхности в воздухе содержится около 28,5 кг водяного пара.

Суточный ход упругости пара над морем и в приморских областях параллелен суточному ходу температуры воздуха: влагосодержание растет днём с возрастанием испарения. Таков же суточный ход е в центральных районах материков в холодное время года. Более сложный суточный ход с двумя максимумами - утром и вечером - наблюдается в глубине материков летом. Суточный ход относительной влажности r обратен суточному ходу температуры: днём с возрастанием температуры и, следовательно, с ростом упругости насыщения Е относительная влажность убывает. Годовой ход упругости пара параллелен годовому ходу температуры воздуха; относительная влажность меняется в годовом ходе обратно температуре. В. в. измеряется гигрометрами и психрометрами .

15. Испаре́ние - физический процесс перехода вещества из жидкого состояния в газообразное (пар) с поверхности жидкости. Процесс испарения является обратным процессу конденсации (переход из парообразного состояния в жидкое).

Процесс испарения зависит от интенсивности теплового движения молекул: чем быстрее движутся молекулы, тем быстрее происходит испарение. Кроме того, немаловажными факторами, влияющими на процесс испарения, являются скорость внешней (по отношению к веществу) диффузии, а также свойства самого вещества. Проще говоря, при ветре испарение происходит гораздо быстрее. Что же касается свойств вещества, то, к примеру, спирт испаряется гораздо быстрее воды. Важным фактором является также площадь поверхности жидкости, с которой происходит испарение: из узкого графина оно будет происходить медленнее, чем из широкой тарелки.

Испаряемость - максимально возможное испарение при данных метеорологических условиях с достаточно увлажненной подстилающей поверхности, то есть в условиях неограниченного запаса влаги. Испаряемость выражается в миллиметрах слоя испарившейся воды и сильно отличается от фактического испарения, особенно в пустыне, где испарение близко к нулю, а испаряемость - 2000 мм в год и более.

16.Конденсация и сублимация. Конденсация состоит в изменении формы воды из ее газообразного состояния (водяной пар) в жидкую воду или кристаллы льда. Конденсация в основном происходит в атмосфере, когда теплый воздух поднимается, остывает и теряет способность содержать в себе водяной пар (состояние насыщения). В результате, избыточный водяной пар конденсируется в форме капельных облаков. Восходящее движение, которое образует облака, может быть вызвано конвекцией в неустойчиво стратифицированном воздухе, конвергенцией, ассоциируемой с циклонами, поднятием воздуха фронтами и поднятием над возвышенностями топографии, такими как горы.

Сублимация - образование ледяных кристаллов (иней) сразу из водяных паров без перехода их в воду или быстром их охлаждении ниже 0°С в то время, когда температура воздуха еще держится выше этого радиационного охлаждения, что случается в тихие ясные ночи в холодную часть года.

Роса́ - вид атмосферных осадков, образующихся на поверхности земли, растениях, предметах, крышах зданий, автомобилях и других предметах.

Из-за охлаждения воздуха водяной пар конденсируется на объектах вблизи земли и превращается в капли воды. Это происходит обычно ночью. В пустынных регионах роса является важным источником влаги для растительности. Достаточно сильное охлаждение нижних слоёв воздуха происходит, когда после заката солнца поверхность земли быстро охлаждается посредством теплового излучения. Благоприятными условиями для этого являются чистое небо и покрытие поверхности, легко отдающее тепло, например травяное. Особенно сильное образование росы происходит в тропических регионах, где воздух в приземном слое содержит много водяного пара и благодаря интенсивному ночному тепловому излучению земли существенно охлаждается. При отрицательных температурах образуется иней.

Температура воздуха ниже которой выпадает роса, называется точкой росы.

И́ней - вид атмосферных осадков, представляющих собой тонкий слой ледяных кристаллов, образующийся из водяного пара атмосферы. Часто сопровождается туманом.Так же, как роса, образуется вследствие охлаждения поверхности до отрицательных температур, более низких, чем температура воздуха, и десублимации водяного пара на поверхности, охладившейся ниже 0°С. По форме частички инея напоминают снежинки, но отличаются от них меньшей правильностью, так как зарождаются в менее равновесных условиях, на поверхности каких-то предметов.

Изморозь - вид атмосферных осадков.

Изморозь представляет собой отложения льда на тонких и длинных предметах (ветвях деревьев, проводах) при тумане.



Поделитесь с друзьями или сохраните для себя:

Загрузка...