Устройство и принцип действия газовой турбины. Принцип действия газотурбинных установок (ГТУ) Принцип работы газовой турбины

Газовой турбиной принято называть непрерывно действующий двигатель. Далее пойдёт речь о том, как устроена газовая турбина, в чем заключается принцип работы агрегата. Особенностью такого двигателя является то, что внутри него энергия продуцируется сжатым или нагретым газом, результатом преобразования которого является механическая работа на валу.

История создания газовой турбины

Интересно, что механизмы турбин начали разрабатываться инженерами уже очень давно. Первая примитивная паровая турбина была создана ещё в I веке до н. э.! Конечно же, своего существенног
о расцвета данный механизм достиг только сейчас. Активно разрабатываться турбины начали в конце XIX века одновременно с развитием и совершенствованием термодинамики, машиностроения и металлургии.

Менялись принципы механизмов, материалы, сплавы, всё совершенствовалось и вот, на сегодняшний день человечеству известна наиболее совершенная из всех ранее существующих форм газовой турбины, которая разграничивается на различные типы. Есть авиационная газовая турбина, а есть промышленная.

Газовой турбиной принято называть своеобразный тепловой двигатель, его рабочим частям предопределено только одно задание – вращаться вследствие воздействия струи газа.

Устроена она таким образом, что главная часть турбины представлена колесом, на которое прикреплены наборы лопаток. , воздействуя на лопатки газовой турбины, заставляет их двигаться и вращать колесо. Колесо в свою очередь жёстко скреплено с валом. Этот тандем имеет специальное название – ротор турбины. Вследствие этого движения, происходящего внутри двигателя газовой турбины, достигается получение механической энергии, которая передаётся на электрогенератор, на гребной винт корабля, на воздушный винт самолёта и другие рабочие механизмы аналогичного принципа действия.

Активные и реактивные турбины

Воздействие газовой струи на лопатки турбины может быть двояким. Поэтому турбины разделяются на классы: класс активных и реактивных турбин. Отличаются реактивная и активная газовая турбина принципом устройства.

Активная турбина

Активная турбина характеризуется тем, что здесь отмечается большая скорость поступления газа на рабочие лопатки. При помощи изогнутой лопатки, струя газа отклоняется от своей траектории движения. В результате отклонения развивается большая центробежная сила. С помощью этой силы лопатки приводятся в движение. Во время всего описанного пути газа происходит потеря части его энергии. Такая энергия и направлена на движение рабочего колеса и вала.

Реактивная турбина

В реактивной турбине всё несколько иначе. Здесь поступление газа к рабочим лопаткам осуществляется на незначительной скорости и под воздействием большого уровня давления. Форма лопаток так же отлична, благодаря чему скорость газа значительно увеличивается. Таким образом, струя газа создаёт своего рода реактивную силу.

Из описываемого выше механизма следует, что устройство газовой турбины достаточно непростое. Дабы такой агрегат работал бесперебойно и приносил своему владельцу прибыль и выгоду, следует доверить его обслуживание профессионалам. Сервисные профильные компании обеспечивают сервисное обслуживание установок, использующих газовые турбины, поставки комплектующих, всевозможных частей и деталей. DMEnergy — одна из таких компаний (), которые обеспечивают своему клиенту спокойствие и уверенность в том, что он не останется один на один с проблемами, возникающими в ходе эксплуатации газовой турбины.

В автономной генерации - малой энергетике в последнее время значительное внимание уделяется газовым турбинам различной мощности. Электростанции на базе газовых турбин используются как основной или резервный источник электричества и тепловой энергии для объектов производственного или бытового назначения. Газовые турбины в составе электростанций предназначены для эксплуатации в любых климатических условиях России. Области применения газовых турбин практически не ограничены: нефтегазодобывающая промышленность, промышленные предприятия, структуры ЖКХ.

Положительным фактором использования газовых турбин в сфере ЖКХ является то, что содержание вредных выбросов в выхлопных газах NO х и CO находится на уровне 25 и 150 ppm соответственно (у поршневых установок эти значения гораздо больше), что позволяет устанавливать электростанцию рядом с жилой застройкой. Использование газовых турбин в качестве силовых агрегатов электростанций позволяет избежать строительства высоких дымовых труб.

В зависимости от потребностей газовые турбины комплектуется паровыми или водогрейными котлами–утилизаторами, что позволяет получать от электростанции либо пар (низкого, среднего, высокого давления) для технологических нужд, либо горячую воду (ГВС) со стандартными температурными значениями. Можно получать пар и горячую воду одновременно. Мощность тепловой энергии, производимой электростанцией на базе газовых турбин, как правило, в два раза превышает электрическую.

На электростанции с газовыми турбинами в такой конфигурации коэффициент использования топлива возрастает до 90%. Высокая эффективность использования газовых турбин в качестве силовых агрегатов обеспечивается при длительной работе с максимальной электрической нагрузкой. При достаточно высокой мощности газовых турбин существует возможность совокупного использования паровых турбин. Эта мера позволяет существенно повысить эффективность использования электростанции, увеличивая электрический КПД до 53%.

Сколько стоит электростанция на базе газовых турбин? Какова её полная цена? Что входит в стоимость «под ключ»?

Автономная тепловая электростанция на базе газовых турбин имеет массу дополнительного дорогостоящего, но зачастую, просто необходимого оборудования (пример из жизни – реализованный проект). С использованием первоклассного оборудования стоимость электростанции подобного уровня, «под ключ», не превышает 45000 - 55000 рублей за 1 кВт установленной электрической мощности. Конечная цена электростанции на основе газовых турбин зависит от конкретных задач и нужд потребителя. В стоимость входят проектные, строительные и пусконаладочные работы. Сами газовые турбины, как силовые агрегаты, без дополнительного оборудования, в зависимости от компании-производителя и мощности, стоят от 400 до 800 долларов за 1 кВт.

Для получения информации о стоимости строительства электростанции или ТЭС в конкретном Вашем случае, необходимо отправить в нашу компанию заполненный опросный лист . После этого, по истечении 2–3 дней заказчик-клиент получает предварительное технико-коммерческое предложение - ТКП (краткий пример). На основании ТКП заказчиком принимается окончательное решение о строительстве электростанции на базе газовых турбин. Как правило, до принятия решения клиент посещает уже существующий объект, чтобы воочию увидеть современную электростанцию и «потрогать всё руками». Непосредственно на объекте заказчик получает ответы на имеющиеся вопросы.

За основу строительства электростанций на базе газовых турбин часто берется концепция блочно–модульного построения. Блочно-модульное исполнение обеспечивает высокий уровень заводской готовности газотурбинных электростанций и уменьшает сроки строительства объектов энергетики.

Газовые турбины – немного арифметики по себестоимости производимой энергии

Для производства 1 кВт электричества газовые турбины потребляют всего 0,29–0,37 м³/час газового топлива. При сжигании одного кубического метра газа, газовые турбины вырабатывают 3 кВт электричества и 4–6 кВт тепловой энергии. С ценой (усредненной) на природный газ в 2011 году 3 руб. за 1 м³, себестоимость 1 кВт электроэнергии полученной от газовой турбины, равна, приблизительно, 1 рублю. Дополнительно к этому потребитель получает 1,5–2 кВт бесплатной тепловой энергии!

При автономном энергоснабжении от электростанции на основе газовых турбин себестоимость производимой электроэнергии и тепла в 3–4 раза ниже действующих по стране тарифов, и это без учета высокой стоимости подключения к государственным электросетям (60 000 рублей за 1 кВт в Московской области, 2011 год).

Строительство автономных электростанций на основе газовых турбин позволяет получить значительную экономию денежных средств за счет исключения издержек на строительство и эксплуатацию дорогостоящих линий электропередач (ЛЭП), Электростанции на базе газовых турбин могут значительно повысить надежность электрического, теплового снабжения как отдельных предприятий или организаций, так и регионов в целом.
Степень автоматизации электростанции на основе газовых турбин позволяет отказаться от большого количества обслуживающего персонала. Во время эксплуатации газовой электростанции ее работу обеспечивают всего три человека: оператор, дежурный электрик, дежурный механик. При возникновении аварийных ситуаций для обеспечения безопасности персонала, сохранности систем и агрегатов газовой турбины предусмотрены надежные системы защиты.

Атмосферный воздух через воздухозаборник, оборудованный системой фильтров (на схеме не показаны) подается на вход многоступенчатого осевого компрессора. Компрессор сжимает атмосферный воздух, и подает его под высоким давлением в камеру сгорания. В это же время в камеру сгорания турбины через форсунки подается и определенное количество газового топлива. Топливо и воздух перемешиваются и воспламеняются. Топливовоздушная смесь сгорает, выделяя большое количество энергии. Энергия газообразных продуктов сгорания преобразуется в механическую работу за счёт вращения струями раскаленного газа лопаток турбины. Часть полученной энергии расходуется на сжатие воздуха в компрессоре турбины. Остальная часть работы передаётся на электрический генератор через ось привода. Эта работа является полезной работой газовой турбины. Продукты сгорания, которые имеют температуру порядка 500-550 °С, выводятся через выхлопной тракт и диффузор турбины, и могут быть далее использованы, например, в теплоутилизаторе, для получения тепловой энергии.

Газовые турбины, как двигатели, имеют самую большую удельную мощность среди ДВС, до 6 кВт/кг.

В качестве топлива газовой турбины могут использоваться: керосин, дизельное топливо, газ .

Одними из преимуществ современных газовых турбин является длительный жизненный цикл - моторесурс (полный до 200 000 часов, до капитального ремонта 25000–60000 часов).

Современные газовые турбины отличаются высокой надежностью. Есть данные о непрерывной работе некоторых агрегатов в течение нескольких лет.

Многие поставщики газовых турбин производят капитальный ремонт оборудования на месте, производя замену отдельных узлов без транспортировки на завод-изготовитель, что существенно снижает временные затраты.

Возможность длительной работы в любом диапазоне мощностей от 0 до 100%, отсутствие водяного охлаждения, работа на двух видах топлива, - все это делает газовые турбины востребованными силовыми агрегатами для современных автономных электростанций.

Наиболее эффективно применение газовых турбин при средних мощностях электростанций, а на мощностях свыше 30 МВт - выбор очевиден.

Как и дизельный или бензиновый двигатель, газовая турбина - это двигатель внутреннего сгорания с рабочим циклом впуск-сжатие-сгорание (расширение)-выпуск. Но, существенно отличается основное движение. Рабочий орган газовой турбины вращается, а в поршневом двигателе движется возвратно-поступательно.

Принцип работы газовой турбины показан на рисунке ниже. Сначала, воздух сжимается компрессором, затем сжатый воздух подается в камеру сгорания. Здесь, топливо, непрерывно сгорая, производит газы с высокой температурой и давлением. Из камеры сгорания газ, расширяясь в турбине, давит на лопатки и вращает ротор турбины (вал с крыльчатками в виде дисков, несущих рабочие лопатки), который в свою очередь опять вращает вал компрессора. Оставшаяся энергия снимается через рабочий вал.

Особенности газовых турбин

Типы газовых турбин по конструкции и назначению


Самый основной тип газовой турбины - создающий тягу реактивной струей, он же самый простой по конструкции.
Этот двигатель подходит для самолетов, летающих на высокой скорости, и используется в сверхзвуковых самолетах и реактивных истребителях.


У этого типа есть отдельная турбина за турбореактивным двигателем, которая вращает большой вентилятор впереди. Этот вентилятор увеличивает поток воздуха и тягу.
Этот тип малошумен и экономичен на дозвуковых скоростях, поэтому газовые турбины именно этого типа используются для двигателей пассажирских самолётов.


Эта газовая турбина выдает мощность как крутящий момент, причем у турбины и компрессора общий вал. Часть полезной мощности турбины идет на вращение вала компрессора, а остальная энергия передается на рабочий вал.
Этот тип используют, когда нужна постоянная скорость вращения, например - как привод генератора.


В этом типе вторая турбина размещается после турбины с газогенератором, и вращательное усилие передается на нее реактивной струей. Эту заднюю турбину называют силовой. Поскольку валы силовой турбины и компрессора не связаны механически, скорость вращения рабочего вала свободно регулируется. Подходит как механический привод с широким диапазоном скоростей вращения.
Этот тип широко используется в винтовых самолетах и вертолетах, а также в таких установках, как приводы насоса/компрессора, главные судовые двигатели, приводы генератора и т.п.

Что такое газовая турбина серии GREEN?

Принцип, которому Kawasaki следует в газотурбинном бизнесе, начиная с разработки в 1972 году нашей первой ГТУ, позволил нам предлагать клиентам все более совершенное оборудование, т.е., более энергоэффективное и экологичное. Идеи, заложенные в наших продуктах, получили высокую оценку мирового рынка и позволили нам накопить референции на более, чем 10 000 турбин (на конец марта 2014 года) в составе резервных генераторов и когенерационных систем.
Газовые турбины Kawasaki всегда имели большой успех, и мы, показывая еще большую нашу приверженность этому принципу, дали им новое название "Газовые турбины GREEN".

Грицына В.П.

В связи с многократным ростом тарифов на электроэнергию в России, на многих предприятиях рассматривается вопросы строительства собственных электростанций малой мощности. В ряде регионов разрабатываются программы строительства малых или мини ТЭЦ, в частности, как замена устаревших котельных. На новой малой ТЭЦ, коэффициент использования топлива на которой достигает 90% при полном использовании тела в производстве и для отопления, стоимость получаемой электроэнергии может быть значительно ниже стоимости электроэнергии, получаемой от энергосистемы.

При рассмотрении проектов сооружения малых ТЭС энергетики и специалисты предприятий ориентируются на показатели, достигнутые в большой энергетике. Постоянное совершенствование газовых турбин (ГТУ) для применения в большой энергетике позволило увеличить их кпд до 36% и более, а применение комбинированного парогазового цикла (ПГУ) увеличило электрический кпд ТЭС до 54 %-57%.
Однако, в малой энергетике нецелесообразно рассматривать возможности применения сложных схем комбинированных циклов ПГУ для производства электроэнергии. Кроме того, газовые турбины в сравнении с газовыми двигателями, как приводы электрогенераторов, существенно проигрывают по кпд и эксплуатационным характеристикам, особенно при малых мощностях (менее 10 МВт). Так как в нашей стране ни газовые турбины, ни газопоршневые двигатели пока не получили широкого распространения в малой стационарной энергетике, то выбор конкретного технического решения представляет существенную проблему.
Эта проблема актуальна и для большой энергетики, т.е. для энергосистем. В современных экономических условиях, при отсутствии средств на строительство крупных электростанций по устаревшим проектам, к которым можно уже отнести и отечественный проект ПГУ 325 МВт, спроектированный 5 лет назад. Энергосистемы и РАО ЕЭС России должны обратить специальное внимание на развитие малой энергетики, на объектах которой могут быть опробованы новые технологии, что позволит начать возрождение отечественных турбостроительных и машиностроительных заводов и в дальнейшем перейти на большие мощности.
В последнее десятилетие за рубежом построены крупные дизельные или газомоторные ТЭС мощностью 100-200 Мвт . Электрический кпд дизельных или газомоторных электростанций (ДТЭС) достигает 47%, что превышает показатели ГТУ (36%-37%), однако уступает показателям ПГУ (51%-57%). Электростанции ПГУ включают большую номенклатуру оборудования: газовую турбину, паровой котел-утилизатор, паровую турбину, конденсатор, систему водоподготовки (плюс еще дожимной компрессор, если сжигается природный газ низкого или среднего давления. Дизель-генераторы могут работать на тяжелом топливе, которое в 2 раза дешевле, чем газотурбинное топливо и могут работать на газе низкого давления без применения дожимных компрессоров. По оценке фирмы S.E.M.T. PIELSTICK , полные затраты в течение 15 лет на эксплуатацию дизельного энергоблока мощностью 20 МВт в 2 раза меньше, чем для газотурбинной ТЭС той же мощности при использовании жидкого топлива обеими энергоустановками.
Перспективным Российским производителем дизельных энергоблоков до 22 МВт является Брянский машиностроительный завод, который предлагает заказчикам энергоблоки с повышенным кпд до 50% для работы, как на тяжелом топливе с вязкостью до 700 сСт при 50 С и содержанием серы до 5%, так и для работы на газообразном топливе.
Вариант крупной дизельной ТЭС может оказаться предпочтительнее, чем газотурбинная энергоустановка.
В малой энергетике при мощностях агрегатов менее 10 Мвт преимущества современных дизель-генераторов проявляются еще в большей мере.
Рассмотрим три варианта ТЭС с газотурбинными установками и газопоршневыми двигателями.

  • ТЭЦ, работающая на номинальной нагрузке круглосуточно с котлами-утилизаторами для теплоснабжения или пароснабжения.
  • ТЭЦ, электрогенератор и котел-утилизатор, которой работают только днем, а ночью теплоснабжение осуществляется от бака-аккумулятора горячей воды.
  • ТЭС, производящая только электричество без использования тепла уходящих газов.
  • Коэффициент использования топлива у первых двух вариантов электростанций (при различном электрическом кпд) за счет теплоснабжения могут достигать 80%-94%, как в случае применения газовых турбин, так и для моторного привода.
    Экономичность всех вариантов электростанций зависит от надежности и экономичности прежде всего "первой ступени" -привода электрогенератора.
    Энтузиасты применения малых газовых турбин агитируют за их широкое применение, отмечая более высокую удельную мощность. Например, в [ 1 ] сообщается, что Elliot Energy Systems (в 1998-1999 г.) cоздает распределительную сеть из 240 дистрибьюторов в Северной Америке с обеспечением инжиниринговой и сервисной поддержки для продажи "микро"-газовых турбин. Энергосистема заказала изготовление 45 кВт турбины, которая должна была быть готова к поставкам в августе 1998 г. Там же указывалось, что электрический кпд турбины достигает 17%, и отмечается, что надежность газовых турбин выше, чем у дизель-генераторов.
    Это утверждение верно с точностью наоборот!
    Если взглянуть на табл. 1. то мы увидим, что в таком широком диапазоне от сотен кВт до десятков Мвт, кпд моторного привода на 13%-17% выше. Обозначенный ресурс моторного привода фирмы "Вяртсиля" означает гарантированный ресурс до полного капитального ремонта. Ресурс новых газовых турбин, -это расчетный ресурс, подтвержденный испытаниями, но не статистикой работы в реальной эксплуатации. По многочисленным источникам ресурс газовых турбин составляет 30-60 тыс. часов с уменьшением при уменьшении мощности. Ресурс дизелей зарубежного производства составляет 40-100 тысяч часов и более.

    Табл.1
    Основные технические параметры приводов электрогенераторов
    Г-газотурбинная энергоустановка, Д-газопоршневая генераторная установка Вяртсиля.
    Д - дизель из каталога Газпрома
    *Минимальная величина требуемого давления топливного газа=48 ата!!
    Эксплуатационные характеристики
    Электрический кпд (и мощность) электрогенератора с приводом от газового двигателя по данным фирмы Вяртсиля при снижении нагрузки со 100% до 50% кпд меняется слабо.
    КПД газового двигателем практически не изменяется до 25 оС.
    Мощность газовой турбины равномерно падает от -30 оС до +30 оС.
    При температурах выше 40 оС уменьшение мощности газовой турбины (от номинала) составляет 20%.
    Время запуска газового двигателя с 0 до 100% нагрузки составляет менее минуты и экстренно за 20 секунд . Для запуска газовой турбины требуется около 9 мин .
    Давление подачи газа для газовой турбины должно быть 16-20 бар.
    Давление газа в сети для газового двигателя может быть 4 бар (абс) и даже 1,15 бар для двигателя 175 SG.
    Капитальные затраты на ТЭЦ мощностью около 1 Мвт, по оценке специалистов "Вяртсиля" составляют для газотурбинной $1400/ kВт и $900/кВт для газопоршневой ЭУ.

    Применение комбинированного цикла на малых ТЭЦ, путем установки дополнительно паровой турбины нецелесообразно, так как увеличивает вдвое количество тепломеханического оборудования, площадь машзала и количество обслуживающего персонала при увеличении мощности только в 1.5 раза.
    При снижении мощности ПГУ с 325 Мвт до 22 Мвт по данным завода НПП "Машпроект" (Украина, г. Николаев) парадный кпд энергоустановки снижается с 51,5 %до 43,6%.
    КПД дизельэнергоблока (на газовом топливе) мощностью 20-10 Мвт составляет 43,3 %. Отметим, что в летнее время на ТЭЦ с дизельным агрегатом горячее водоснабжение может обеспечиваться от системы охлаждения двигателя.
    Расчеты по конкурентоспособности электростанций, базирующихся на газовых двигателях показали, что себестоимость электроэнергии на малых (1-1,5 Мвт) электростанциях составляет приблизительно 4,5 цента/ кВт.ч), а на крупных 32-40 Мвт с газовыми двигателями станциях 3,8 цента США/кВт.ч.
    Согласно аналогичному методу расчета электроэнергия конденсационной АЭС стоит примерно 5,5 центов США /кВт.ч. , а угольной КЭС примерно 5,9 центов. США/кВт.ч. По сравнению с угольной КЭС станция с газовыми двигателями вырабатывает электроэнергию на 30% дешевле.
    Стоимость электроэнергии, производимой микротурбинами, по другим данным оценивается в пределах от $0,06 до $0,10/ кВт.ч
    Ожидаемая цена за полнокомплектный газотурбинный генератор 75 кВт (США) составляет $40,000, что соответствует удельной стоимость для более крупных (более 1000 кВт) энергоустановок. Большим преимуществом энергоблоков с газовыми турбинами являются меньшие габариты, в 3 и более раз меньший вес.
    Отметим, что удельная стоимость электрогенераторных установок российского производства на базе автомобильных двигателей мощностью 50-150 КВт может оказаться в несколько раз меньше, чем упомянутые турбоблоки (США), учитывая серийность производства двигателей и меньшую стоимость материалов.
    Приведем мнение датских специалистов , оценивающих свой опыт внедрения малых энергоустановок.
    "Инвестиции в завершенную, построенную под ключ ТЭЦ, работающую на природном газе, мощностью 0,5-40 Мвт составляют 6,5-4,5 млн. датских крон на 1 МВт (1 крона была примерно равна 1 рублю летом 1998 г.). ТЭЦ комбинированного цикла мощностью ниже 50 Мвт достигнет электрического кпд= 40-44 %.
    Эксплуатационные расходы на смазочные масла, техническое обслуживание и содержание персонала на ТЭЦ достигают 0,02 дат кроны за 1 кВт.ч, производимого на газовых турбинах. На ТЭЦ с газовыми двигателями эксплуатационные расходы составляют около 0,06 дат. крон на 1 кВт.ч. При текущих ценах на электроэнергию в Дании высокая производительность газовых двигателей более, чем компенсирует их более высокие эксплуатационные расходы.
    Датские специалисты считают, что большинство ТЭЦ мощностью ниже 10 Мвт в ближайшие годы будут оснащены газовыми двигателями".

    Выводы
    Приведенные оценки, казалось бы, однозначно показывают преимущества моторного привода при малых мощностях энергоустановок.
    Однако, в настоящее время мощность предлагаемого моторного привода российского производства на природном газе не превышает мощность 800 кВт-1500 кВт (завод РУМО, Н-Новгород и Коломенский машзавод), а турбоприводы большей мощности могут предложить несколько заводов.
    Два завода в России: з-д им. Климова (С-Петербург) и Пермские Моторы готовы поставлять полнокомплектные энергоблоки мини-ТЭЦ с котлами-утилизаторами.
    В случае организации регионального сервисного центра вопросы техобслуживания и ремонта малых турбин турбин могут решаться путем замены турбины на резервную за 2-4 часа и ее дальнейшим ремонтом в заводских условиях техцентра.

    КПД газовых турбин в настоящее время может быть повышен на 20-30 % путем применения энергетического впрыска пара в газовую турбину (цикл STIG или парогазовый цикл в одной турбине). Это техническое решение в предыдущие годы было проверено в полномасштабных натурных испытаниях энергетической установки "Водолей" в г. Николаеве (Украина) НПП "Машпроект" и ПО "Заря", что позволило увеличить мощность турбоагрегата с 16 до 25 Мвт а кпд был увеличен с 32,8 %до 41,8%.
    Ничего не мешает перенести этот опыт на меньшие мощности и реализовать, таким образом, ПГУ в серийной поставке. В этом случае электрический кпд сравнивается с кпд дизелей, а удельная мощность возрастает настолько, что капитальные затраты могут быть на 50% ниже, чем на ТЭЦ с газомоторным приводом, что весьма привлекательно.

    Данное рассмотрение проведено с целью показать: что при рассмотрении вариантов строительства электростанций в России, а тем более направлений создания программы строительства энергоустановок, необходимо рассматривать не отдельные варианты, которые могут предлагать проектные организации, а широкий перечень вопросов с учетом возможностей и интересов отечественных и региональных производителей оборудования.

    Литература

    1. Power Value, Vol.2, No.4, July/August 1998 , USA, Ventura, CA.
    The Small Turbine Marketplace
    Stan Price, Northwest Energy Efficiency Council, Seattle, Washington and Portland, Oregon
    2. Новые направления энергопроизводства Финляндии
    АСКО ВУОРИНЕН, доц. техн. наук, АО Вяртсила NSD Corporation, "ЭНЕРГЕТИК" -11.1997. стр.22
    3. Централизованное теплоснабжение. Исследование и разработка технологии в Дании. Министерство энергетики. Управление энергетики,1993 г.
    4. DIESEL POWER PLANTS. S.E.M.T. PIELSTICK. Проспект выставки POWERTEK 2000, 14-17 марта 2000 г.
    5. Электростанции и электроагрегаты, рекомендованные к применению на объектах ОАО "ГАЗПРОМ". КАТАЛОГ. Москва 1999 г.
    6. Дизельная электрическая станция. Проспект ОАО "Брянский машиностроительный завод". 1999г. Проспект выставки POWERTEK 2000/
    7. НК-900Э Блочно-модульная теплоэлектростанция. ОАО Самарский научно-технический комплекс им. Н.Д. Кузнецова. Проспект выставки POWERTEK 2000

    Тепловая турбина постоянного действия, в которой тепловая энергия сжатого и нагретого газа (обычно продуктов сгорания топлива) преобразуется в механическую вращательную работу на валу ; является конструктивным элементом газотурбинного двигателя.

    Нагревание сжатого газа, как правило, происходит в камере сгорания. Также можно осуществлять нагрев в ядер-ном реакторе и др. Впервые газовые турбины появились в конце XIX в. в качестве газотурбинного двигателя и по конструктивному выполнению приближались к паровой турбине. Газовая турбина конструктивно представляет собой целый ряд упорядоченно расположенных неподвижных лопаточных венцов аппарата сопла и вращающихся венцов рабочего колеса, которые в результате образуют проточную часть. Ступень турбины представляет собой сопловой аппарат, совмещенный с рабочим колесом . Ступень состоит из статора, в который входят стационарные детали (корпус, сопловые лопатки, бандажные кольца), и ротора , представляющего собой совокупность вращающихся частей (таких, как рабочие лопатки, диски, вал).

    Классификация газовой турбины осуществляется по многим конструктивным особенностям: по направлению газового потока, количеству ступеней, способу использования перепада тепла и способу подвода газа к рабочему колесу. По направлению газового потока можно различить газовые турбины осевые (самые распространенные) и радиальные, а также диагональные и тангенциальные. В осевых газовых турбинах поток в меридиональном сечении транспортируется в основном вдоль всей оси турбины; в радиальных турбинах, наоборот, перпендикулярно оси. Радиальные турбины подразделяются на центростремительные и центробежные. В диагональной турбине газ течет под некоторым углом к оси вращения турбины. У рабочего колеса тангенциальной турбины отсутствуют лопатки, такие турбины применяются при очень малом расходе газа, обычно в измерительных приборах. Газовые турбины бывают одно-, двух- и многоступенчатые.

    Количество ступеней определяется многими факторами: назначением турбины, ее конструктивной схемой, общей мощностью и развиваемой одной ступенью, а также срабатываемым перепадом давления. По способу использования располагаемого перепада тепла различают турбины со ступенями скорости, у которых в рабочем колесе происходит только поворот потока, без изменения давления (активные турбины), и турбины со ступенями давления, в них давление уменьшается как в сопловых аппаратах, так и на рабочих лопатках (реактивные турбины). В парциальных газовых турбинах подвод газа к рабочему колесу происходит по части окружности соплового аппарата или по его полной окружности.

    В многоступенчатой турбине процесс преобразования энергии состоит из целого ряда последовательных процессов в отдельных ступенях. В межлопаточные каналы соплового аппарата подается сжатый и подогретый газ с начальной скоростью, где в процессе расширения происходит преобразование части располагаемого теплоперепада в кинетическую энергию струи вытекания. Дальнейшее расширение газа и преобразование теплоперепада в полезную работу происходят в межлопаточных каналах рабочего колеса. Газовый поток, воздействуя на рабочие лопатки, создает крутящий момент на главном валу турбины. При этом происходит уменьшение абсолютной скорости газа. Чем ниже эта скорость, тем большая часть энергии газа преобразовалась в механическую работу на валу турбины.

    КПД характеризует эффективность газовых турбин, представляющую собой отношение работы, снимаемой с вала, к располагаемой энергии газа перед турбиной. Эффективный КПД современных многоступенчатых турбин довольно высок и достигает 92-94%.

    Принцип работы газовой турбины состоит в следующем: газ нагнетается в камеру сгорания компрессором , перемешивается с воздухом, формирует топливную смесь и поджигается. Образовавшиеся продукты горения с высокой температурой (900-1200 °С) проходят через несколько рядов лопаток, установленных на валу турбины, и приводят к вращению турбины. Полученная механическая энергия вала передается через редуктор генератору , вырабатывающему электричество.

    Тепловая энергия выходящих из турбины газов попадает в теплоутилизатор. Также вместо производства электричества механическая энергия турбины может быть использована для работы различных насосов , компрессоров и т. п. Наиболее часто используемым видом топлива для газовых турбин является природный газ, хотя это не может исключить возможности использования других видов газообразного топлива. Но при этом газовые турбины очень капризны и предъявляют повышенные требования к качеству его подготовки (необходимы определенные механические включения, влажность).

    Температура исходящих из турбины газов составляет 450-550 °С. Количественное соотношение тепловой энергии к электрической у газовых турбин составляет от 1,5: 1 до 2,5: 1, что позволяет строить когенерационные системы, различающиеся по типу теплоносителя:

    1) непосредственное (прямое) использование отходящих горячих газов;
    2) производство пара низкого или среднего давления (8-18 кг/см2) во внешнем котле;
    3) производство горячей воды (лучше, когда требуемая температура превышает 140 °С);
    4) производство пара высокого давления.

    Большой вклад в развитие газовых турбин внесли советские ученые Б. С. Стечкин, Г. С. Жирицкий, Н. Р. Брилинг, В. В. Уваров, К. В. Холщевиков, И. И. Кириллов и др. Значительных успехов в создании газовых турбин для стационарных и передвижных газотурбинных установок достигли зарубежные фирмы (швейцарские «Броун-Бовери», в которой работал известный словацкий ученый А. Стодола, и «Зульцер», американская «Дженерал электрик» и др.).

    В дальнейшем развитие газовых турбин зависит от возможности повышения температуры газа перед турбиной. Это связано с созданием новых жаропрочных материалов и надежных систем охлаждения рабочих лопаток при значительном усовершенствовании проточной части и др.

    Благодаря повсеместному переходу в 1990-е гг. на использование природного газа в качестве основного топлива для электроэнергетики газовые турбины заняли существенный сегмент рынка. Несмотря на то что максимальная эффективность оборудования достигается на мощностях от 5 МВт и выше (до 300 МВт), некоторые производители выпускают модели в диапазоне 1-5 МВт.

    Применяются газовые турбины в авиации и на электростанциях.

    • Предыдущее: ГАЗОАНАЛИЗАТОР
    • Следующее: ГАЗОВЫЙ ДВИГАТЕЛЬ
    Категория: Промышленность на Г 




    Поделитесь с друзьями или сохраните для себя:

    Загрузка...