Аденозинтрифосфат атф его строение и биологическая роль. Строение и биологическая роль атф

Бесспорно, самой важной молекулой в нашем организме с точки зрения производства энергии является АТФ (аденозинтрифосфат: адениловый нуклеотид, содержащий три остатка фосфорной кислоты и образуемый в митохондриях).

В действительности, каждая клетка нашего организма сохраняет и использует энергию для биохимических реакций посредством АТФ, таким образом, АТФ может считаться универсальной валютой биологической энергии. Все живые существа нуждаются в непрерывном энергоснабжении для поддержки синтеза белка и ДНК, метаболизма и транспорта различных ионов и молекул, поддержания жизнедеятельности организма. Мышечные волокна в ходе силовых тренировок также требуют легкодоступной энергии. Как уже упоминалось, энергию для всех этих процессов поставляет АТФ. Однако для того, чтобы сформировать АТФ, нашим клеткам требуется сырье. Люди получают это сырье через калории посредством окисления потребляемой пищи. Для получения энергии, эта пища сначала должна быть переработана в легко используемую молекулу – АТФ.

Перед использованием молекула АТФ должна пройти через несколько фаз.

Сначала при помощи специального коэнзима отделяется один из трех фосфатов (каждый из которых содержит десять калорий энергии), благодаря чему высвобождается большое количество энергии и формируется продукт реакции аденозиндифосфат (АДФ). Если требуется больше энергии, то отделяется следующая фосфатная группа, формируя аденозинмонофосфат (АМФ).

АТФ + H 2 O → АДФ + H 3 PO 4 + энергия
АТФ + H 2 O → АМФ + H 4 P 2 O 7 + энергия

Когда быстрого производства энергии не требуется, происходит обратная реакция – при помощи АДФ, фосфагена и гликогена фосфатная группа вновь присоединяется к молекуле, благодаря чему формируется АТФ. Данный процесс включает перенос свободных фосфатов к другим содержащимся в мышцах веществам, к которым относятся и . При этом из запасов гликогена берется и расщепляется глюкоза.

Полученная из этой глюкозы энергия помогает вновь преобразовывать глюкозу в ее первоначальную форму, после чего свободные фосфаты вновь могут быть присоединены к АДФ для формирования нового АТФ. После завершения цикла вновь созданный АТФ готов к следующему использованию.

В сущности АТФ работает как молекулярная батарея, сохраняя энергию, когда она не нужна, и высвобождая в случае необходимости. Действительно, АТФ похож на полностью перезаряжаемую батарею.

Структура АТФ

Молекула АТФ состоит из трех компонентов:

  • Рибоза (тот же самый пятиуглеродный сахар, что формирует основу ДНК)
  • Аденин (соединенные атомы углерода и азота)
  • Трифосфат

Молекула рибозы располагается в центре молекулы АТФ, край которой служит базой для аденозина.
Цепочка из трех фосфатов располагается с другой стороны молекулы рибозы. АТФ насыщает длинные, тонкие волокна, содержащие белок миозин, который формирует основу наших мышечных клеток.

Сохранение АТФ

В организме среднего взрослого человека ежедневно используется около 200-300 молей АТФ (моль – это химический термин, обозначающий количество вещества в системе, в котором содержится столько элементарных частиц, сколько атомов углерода содержится в 0,012 кг изотопа углерод-12). Общее количество АТФ в организме в каждый отдельно взятый момент составляет 0,1 моли. Это означает, что АТФ должен повторно использоваться 2000-3000 раз в течение дня. АТФ не может быть сохранен, поэтому уровень его синтеза почти соответствует уровню потребления.

Системы АТФ

Ввиду важности АТФ с энергетической точки зрения, а также из-за его широкого использования у организма имеется различные способы производства АТФ. Это три разные биохимические системы. Рассмотрим их по порядку:

Когда мышцам предстоит короткий, но интенсивный период активности (около 8-10 секунд), используется фосфагенная система – АТФ соединяется с креатинфосфатом. Фосфагенная система обеспечивает постоянную циркуляцию небольшого количества АТФ в наших мышечных клетках.

Мышечные клетки также содержат высокоэнергетический фосфат – фосфат креатина, который используется для восстановления уровня АТФ после кратковременной, высокоинтенсивной активности. Энзим креатинкиназа отнимает фосфатную группу у креатина фосфата и быстро передает ее АДФ для формирования АТФ. Итак, мышечная клетка превращает АТФ в АДФ, а фосфаген быстро восстанавливает АДФ до АТФ. Уровень креатина фосфата начинает снижаться уже через 10 секунд высокоинтенсивной активности, и уровень энергии падает. Примером работы фосфагенной системы является, например, спринт на 100 метров.

Система гликогена и молочной кислоты снабжает организм энергией в более медленном темпе, чем фосфагенная система, хотя и работает относительно быстро и предоставляет достаточно АТФ примерно для 90 секунд высокоинтенсивной активности. В данной системе молочная кислота образуется из глюкозы в мышечных клетках в результате анаэробного метаболизма.

Учитывая тот факт, что в анаэробном состоянии организм не использует кислород, эта система дает кратковременную энергию без активации кардио-респираторной системы точно так же, как и аэробная система, но с экономией времени. Более того, когда в анаэробном режиме мышцы работают быстро, мощно сокращаются, они перекрывают поступление кислорода, поскольку сосуды оказываются сжатыми.

Эту систему еще иногда называют анаэробным дыханием, и хорошим примером в данном случае послужит 400-метровый спринт.

Если физическая активность длится более дух минут, в работу включается аэробная система, и мышцы получают АТФ сначала из , потом из жиров и наконец из аминокислот (). Белок используется для получения энергии в основном в условиях голода (диеты в некоторых случаях).


При аэробном дыхании производство АТФ проходит наиболее медленно, но энергии получается достаточно, чтобы поддерживать физическую активность на протяжении нескольких часов. Это происходит потому, что при аэробном дыхании глюкоза распадается на диоксид углерода и воду, не испытывая противодействия со стороны молочной кислоты в системе гликогена и молочной кислоты. Гликоген (накапливаемая форма глюкозы) при аэробном дыхании поставляется из трех источников:

  1. Всасывание глюкозы из пищи в желудочно-кишечном тракте, которая через систему кровообращения попадает в мышцы.
  2. Остатки глюкозы в мышцах
  3. Расщепление гликогена печени до глюкозы, которая через систему кровообращения попадает в мышцы.

Заключение

Если вы когда-нибудь задумывались над тем, откуда у нас берется энергия для выполнения разнообразных видов активности при различных условиях, то ответом будет — в основном за счет АТФ. Эта сложная молекула оказывает помощь в преобразовании различных пищевых компонентов в легко используемую энергию.

Без АТФ наш организм просто не смог бы функционировать. Таким образом, роль АТФ в производстве энергии многогранна, но в то же время проста.

Слаженное функционирование все систем организма возможно при правильном энергетическом обмене, который происходит на клеточном уровне. Обеспечить всем клеткам вспомогательный источник питания способен препарат АТФ. Его действующий компонент не только приводит к лучшему метаболизму в тканях, но и улучшает их энергообеспечение.

Форма выпуска и состав

Преимущественно препарат имеет вид раствора, предназначенного для введения внутрь мышцы. Фасуется АТФ в прозрачные стеклянные ампулы по 1 мл, которые помещаются в блистер. Одна упаковка содержит 10 единиц.

Главным действующим компонентом является аденозинтрифосфат натрия, содержание которого в ампуле приравнивается к 1%. При его разведении с раствором в конечном итоге выходит 10 мл.

Врач может назначить дополнительный прием таблеток «АТФ лонг», что позволит усилить ожидаемый эффект.

Принцип действия

Активный компонент не только улучшает обмен веществ и энергообеспечение в тканях всего организма, но и выполняет ряд других важных функций:

  • Передает сигналы возбуждения от нервов головного мозга к сердечной мышце;
  • Нормализует работу связующих каналов, располагающихся в межклеточном пространстве;
  • Приводит в норму проведение импульса по волокнам нервов;
  • Повышает выносливость сердечной мышцы во время ее активной работы;
  • Способствует расслаблению мышц сердца.

Фармакология

Препарат применяется при лечении ишемии, при которой наблюдается ухудшение состояния мембран. Инструкция по применению для уколов атф подтверждает про высокие показатели стимулирования энергетического обмена. Регулярное применение препарата, а также курсовая терапия, позволяют улучшить транспортировку ионов в мембраны клеток. Такое действие способствует восстановлению оптимального содержания солей магния и калия.

Уколы атф улучшают процесс циркуляции крови в сосудах, что приводит к нормализации работы сердечной мышцы. При длительной терапии происходит заметное увеличение физической активности.

Показания к применению

Инъекции препарата атф целесообразно применять в следующих случаях:

  • Жалобы пациента на сниженную физическую активность, а также на быстрое утомление;
  • В случае подготовки спортсмена к соревнованиям;
  • Для восстановления работы сердца;
  • При сниженной циркуляции крови в сосудах мозга;
  • При риске наступления инфаркта и аритмии;
  • С целью устранения синдрома «хронической усталости».

Колоть препарат обычно назначается при:

  • Ишемии сердца;
  • Тахикардии;
  • Миокардите;
  • Вегетососудистой дистонии;
  • Стенокардии и прочих заболеваниях, приводящих к нарушению сердечного ритма.

Противопоказания

Введение АТФ противопоказано при наличии индивидуальной непереносимости аденозинтрифосфата натрия, а также при воспалительных болезнях органов дыхания.

Также терапия на основе данного препарата не рекомендуется при острой форме инфаркта миокарда, а также во время беременности, лактационного периода и пациентам моложе 18 лет.

Инструкция по применению

Препарат предназначен для введения, не затрагивая пищевод и ЖКТ, поэтому врачи чаще всего назначают внутримышечные уколы атф. Введение через вену допускается в случае тяжелого состояния пациента, которое предполагает локализацию наджелудочковой тахикардии. Длительность курса назначает врач, исходя клинической картины, общего состояния пациента и других факторов.

Стандартный курс лечения имеет вид:

Суточный объем препарата пациентам старше 18 лет обычно составляет 1-2 мл. В первые двое суток проводятся внутримышечные инъекции по 1 мл каждые 24 ч. В последующие дни уколы проводятся с частотой 12 ч, что приравнивается к 2 мл в сутки. В некоторых ситуациях можно вводить атф изначально с интервалом 12 ч.

Курс лечения обычно длится 30-45 дней. Повторное его проведение возможно после интервала в 1-2 месяцев.

  • Дегенерация сетчатки наследственного характера

При лечении данной патологии среднесуточное введение атф составляет 10 мл. Инъекции назначаются по 2 раза в день в объеме 5 мл. Терапия проводится 2 недели и повторяется при необходимости спустя 9-11 месяцев.

  • При купировании суправентрикулярной тахикардии

Препарат вводится внутрь вены на промежутке 5-10 сек с возможным повторением через 3 мин. Как правило, уже через 24 ч после инъекции состояние организма нормализуется.

Побочные явления

Введение аденозинтрифосфата натрия в большинстве случаев хорошо переносится организмом, но иногда может привести к появлению мигрени, усиленному диурезу, а также вызвать тахикардию.

Также после инъекций атф может возникать:

  • Тошнота;
  • Слабость;
  • Покраснение кожи лица;
  • Мигрень;

Особые указания

Не желательно вводить препарат одновременно с большим количеством сердечных гликозидов. Такое взаимодействие может привести к увеличению риска развития побочных явлений, включая проявления аритмии.

Условия хранения

Как показывает медицинская практика и отзывы пациентов, препарат атф хорошо переносится организмом и благотворно влияет на работу сердечно-сосудистой системы. Его широкий спектр использования позволяет применять его при многих заболеваниях.

В основе всех живых процессов лежит атомно-молекулярное движение. Как дыхательный процесс, так и клеточное развитие, деление невозможны без энергии. Источником энергетического снабжения является АТФ, что это такое и как образуется рассмотрим далее.

Перед изучением понятия АТФ необходима его расшифровка. Данный термин означает нуклеозидтрифосфат, который существенно значим для энергетического и вещественного обмена в составе организма.

Это уникальный энергетический источник, лежащий в основе биохимических процессов. Данное соединение является основополагающим для ферментативного образования.

АТФ был открыт в Гарварде в 1929 году. Основоположниками стали ученые Гарвардской медицинской школы. В их число вошли Карл Ломан, Сайрус Фиске и Йеллапрагада Суббарао. Они выявили соединение, которое по строению напоминало адениловый нуклеотид рибонуклеиновых кислот.

Отличительной особенностью соединения было содержание трех остатков фосфорной кислоты вместо одного. В 1941 году ученый Фриц Липман доказал, что АТФ имеет энергетический потенциал в пределах клетки. Впоследствии был обнаружен ключевой фермент, который получил название АТФ-синтаза. Его задача – образование в митохондриях кислотных молекул.

АТФ – это энергетический аккумулятор в клеточной биологии, является обязательным для успешного осуществления биохимических реакций.

Биология аденозинтрифосфорной кислоты предполагает ее образование в результате энергетического обмена. Процесс состоит из создания 2 молекул на второй стадии. Остальные 36 молекул появляются на третьем этапе.

Скопление энергии в структуре кислоты происходит в связующей части между остатками фосфора. В случае отсоединения 1 фосфорного остатка происходит энергетическое выделение 40 кДж.

В результате кислота превращается в аденозиндифосфат (АДФ). Последующее фосфатное отсоединение способствует появлению аденозинмонофосфата (АМФ).

Следует отметить, цикл растений предусматривает повторное использование АМФ и АДФ, в результате которого происходит восстановление этих соединений до состояния кислоты. Это обеспечивается процессом .

Строение

Раскрытие сущности соединения возможно после изучения того, какие соединения входят в состав молекулы АТФ.

Какие соединения входят в состав кислоты:

  • 3 остатка фосфорной кислоты. Кислотные остатки объединяются друг с другом посредством энергетических связей неустойчивого характера. Встречается также под названием ортофосфорной кислоты;
  • аденин: Является азотистым основанием;
  • рибоза: Представляет собой пентозный углевод.

Вхождение в состав АТФ данных элементов присваивает ей нуклеотидное строение. Это позволяет относить молекулу к категории нуклеиновых кислот.

Важно! В результате отщепления кислотных молекул происходит высвобождение энергии. Молекула АТФ содержит 40 кДж энергии.

Образование

Формирование молекулы происходит в митохондриях и хлоропластах. Основополагающий момент в молекулярном синтезе кислоты – диссимиляционный процесс. Диссимиляция – процесс перехода сложного соединения до относительно простого за счет разрушения.

В рамках синтеза кислоты принято выделять несколько стадий:

  1. Подготовительная. Основа расщепления – пищеварительный процесс, обеспечивается за счет ферментативного действия. Распаду подвергается пища, попавшая в организм. Происходит жировое разложение до жирных кислот и глицерина. Белки распадаются до аминокислот, крахмал – до образования глюкозы. Этап сопровождается выделением энергии теплового характера.
  2. Бескислородная, или гликолиз. В основе лежит процесс распада. Происходит глюкозное расщепление с участием ферментов, при этом 60% выделяемой энергии превращается в тепло, остальная часть остается в составе молекулы.
  3. Кислородная, или гидролиз; Осуществляется внутри митохондрий. Происходит с помощью кислорода и ферментов. Участвует выдыхаемый организмом кислород. Завершается полной . Подразумевает энергетическое выделение для формирования молекулы.

Существуют следующие пути молекулярного образования:

  1. Фосфорилирование субстратного характера. Основано на энергии веществ в результате окисления. Превалирующая часть молекулы формируется в митохондриях на мембранах. Осуществляется без участия ферментов мембраны. Совершается в цитоплазматической части посредством гликолиза. Допускается вариант образования за счет транспортировки фосфатной группы с иных макроэргических соединений.
  2. Фосфорилирование окислительного характера. Происходит за счет окислительной реакции.
  3. Фотофосфорилирование у растений в ходе фотосинтеза.

Значение

Основополагающее значение молекулы для организма раскрывается через то, какую функцию выполняет АТФ.

Функционал АТФ включает следующие категории:

  1. Энергетическую. Обеспечивает организм энергией, является энергетической основой физиологических биохимических процессов и реакций. Происходит за счет 2 высокоэнергетических связей. Подразумевает мышечное сокращение, формирование трансмембранного потенциала, обеспечение молекулярного переноса сквозь мембраны.
  2. Основу синтеза. Считается исходным соединением для последующего образования нуклеиновых кислот.
  3. Регулятивную. Лежит в основе регуляции большинства процессов биохимического характера. Обеспечивается за счет принадлежности к аллостерическому эффектору ферментативного ряда. Воздействует на активность регуляторных центров путем их усиления или подавления.
  4. Посредническую. Считается вторичным звеном в передаче гормонального сигнала в клетку. Является предшественником образования циклического АДФ.
  5. Медиаторную. Является сигнальным веществом в синапсах и иных взаимодействиях клеточного характера. Обеспечивается пуринергическая сигнальная передача.

Среди вышеперечисленных моментов главенствующее место отводится энергетической функции АТФ.

Поступающая в организм человека пища претерпевает сложные химические превращения, т.е. частично подвергается окислению или анаэробному распаду. При анаэробном распаде освобождается химическая энергия, необходимая для движения, а также для синтеза необходимых для организма веществ.

Обмен веществ (метаболизм) в живых организмах состоит из двух связанных между собой процессов:

  • анаболизма
  • катаболизма

Анаболизм или ассимиляция – синтез из простых более сложных соединений на основе поступающих в организм из внешней среды веществ.

Например, органические вещества в зеленых растениях образуются в результате фотосинтеза из углекислого газа и воды.

Катаболизм или диссимиляция – процесс, обратный анаболизму. При катаболизме происходит разложение сложных соединений на более простые, которые затем выделяются как конечные продукты в окружающую среду.

При катаболизме основным источником углеводов являются углеводы, которые расщепляются гидролитическими ферментами. Если у растений при прорастании семян крахмал подвергается гидролизу ферментом амилазой, с образованием дисахарида мальтозы, то у животных под действием амилазы слюны и поджелудочной железы, образуя мальтозу. Далее мальтоза под действием фермента мальтазы переходит в глюкозу, которая в результате брожения, гликолиза и дыхания в конечном итоге расщепляется до углекислоты и воды. Энергия, выделяемая при этих процессах, аккумулируется в организме. Установлено, что при сгорании одного грамма углеводов выделяется 4,1 ккал (17,22 кДж).

Катаболизм жиров и белков также начинается с их гидролитического расщепления под влиянием специфических ферментов, с образованием в первом случае свободных жирных кислот и глицерина, во втором – низкомолекулярных пептидов и аминокислот.

Метаболизм или обмен веществ можно разделить на три этапа:

  • Первый- это пищеварение, который заключается в механической и химической обработке пищи в пищеварительных органах и всасывание питательных веществ.
  • Второй этап это – промежуточный обмен, который включает процессы распада и синтеза веществ. Этот процесс сопровождается образованием промежуточных и конечных продуктов обмена. Например, глюкоза прежде чем превратиться в конечные продукты обмена СО2 и Н2О, претерпевает ряд промежуточных превращений.
  • Третий этап – выделение продуктов метаболизма из организма с выдыхаемым воздухом, мочой и т.д. Вещества, влияющие на течение реакции обмена веществ называют метаболитами. К ним относятся аминокислоты, жирные кислоты, сахара, азотистые основания и другие соединения.

Метаболизм или обмен веществ неразрывно связан с превращением энергии. Живой организм постоянно нуждается в поступлении энергии из внешней среды. Было установлено, что при фотосинтезе, т.е. преобразовании энергии солнечного света, последняя запасается в виде потенциальной химической энергии в органических веществах. Потенциальная химическая энергия, которая образуется в результате распада углеводов, жиров и других высокомолекулярных соединений накапливается или аккумулируется в макроэргических соединениях.

В процессах обмена энергия выделяется следующим образом. Вначале высокомолекулярные вещества гидролитически распадаются на низкомолекулярные; например, полисахариды – до моносахаридов; белки – до аминокислот; жиры – до жирных кислот и глицерина. При этом энергия, выделяющаяся при гидролитическом распаде этих веществ очень незначительна. Далее происходит выделение большого количества энергии в процессе гликолиза, окисления жирных кислот, аминокислот. Из продуктов гидролиза основное энергетическое значение имеют три: ацетилкоэнзим А, В -кетоглутаровая кислота и щавелево-уксусная кислота. Эти вещества подвергаются окислению через цикл ди-трикарбоновых кислот (цикл Кребса). Около 2/3 энергии освобождается в цикле Кребса.

АТФ улавливает и накапливает энергию, освобождающуюся при распаде высокомолекулярных органических соединений в организме. Одновременно в клетке идет синтез АТФ и аккумуляция энергии в ее фосфорных связях. При синтезе белков, а также при функционировании органов и мышц сопряжено идет распад АТФ по месту макроэргических связей с выделением энергии. Образовавшаяся энергия служит источником для синтеза, а также для двигательных процессов.

Из вышесказанного следует, что АТФ является связующим звеном между двумя противоположными процессами, где она при распаде веществ аккумулирует энергию, а при ассимиляции ее отдает.

Биологическую роль АТФ в энергетике обмена можно представить на примере работающего сердца. При взаимодействии с сократительными белками мышц АТФ обеспечивает энергию, необходимую для сокращения сердца и проталкивания крови в кровеносную систему. При этом для бесперебойной работы сердца необходимо постоянное пополнение количества АТФ. Если сердце не получит необходимого количества питательного материала и «горючего» (углеводы и продукты их распада), а также кислорода, необходимого для образования АТФ, то в этом случае наступает нарушение работы сердца.

Необходимое количество АТФ для функционирования различных органов вырабатывается в клеточных организмах – метохондриях в процессе окислительного фосфорилирования.

За счет чего человек двигается? Что такое энергетический обмен? Откуда берется энергия для организма? На сколько ее хватит? При какой физической нагрузке, какая энергия расходуется? Вопросов как видите много. Но больше всего их появляется, когда начинаешь эту тему изучать. Попробую облегчить самым любопытным жизнь и сэкономить время. Поехали…

Энергетический обмен – совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии.

Для обеспечения движения (актиновых и миозиновых нитей в мышце) мышце требуется АденозинТриФосфат (АТФ). При разрыве химических связей между фосфатами выделяется энергия, которая используется клеткой. При этом АТФ переходит в состояние с меньшей энергией в АденозинДиФосфат (АДФ) и неорганического Фосфора (Ф)

Если мышца производит работу, то АТФ постоянно расщепляется на АДФ и неорганический фосфор выделяя при этом Энергию (порядка 40-60 кДж/моль). Для продолжительной работы необходимо восстановление АТФ с такой скоростью, с какой это вещество используется клеткой.

Источники энергии, используемые при кратковременной, непродолжительной и продолжительной работе различные. Образование энергии может осуществляться как анаэробным (безкислородным), так и аэробным (окислительным) способом. Какие качества развивает спортсмен тренируясь в аэробной или анаэробной зоне я писал в статье « «.

Выделяют три энергетические системы, обеспечивающие физическую работу человека:

  1. Алактатная или фосфагенная (анаэробная). Связана с процессами ресинтеза АТФ преимущественно за счет высокоэнергетического фосфатного соединения – КреатинФосфата (КрФ).
  2. Гликолитическая (анаэробная). Обеспечивает ресинтез АТФ и КрФ за счет реакций анаэробного расщепления гликогена и/или глюкозы до молочной кислоты (лактата).
  3. Аэробная (окислительная). Возможность выполнения работы за счет окисления углеводов, жиров, белков при одновременном увеличении доставки и утилизации кислорода в работающих мышцах.

Источники энергии при кратковременной работе.

Быстродоступную энергию мышце дает молекула АТФ (АденозинТриФосфат). Этой энергии хватает на 1-3 секунды. Этот источник используется для мгновенной работы, максимальном усилии.

АТФ + H2O ⇒ АДФ + Ф + Энергия

В организме АТФ является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000-3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

Пополняется АТФ за счет КрФ (КреатинФосфат), это вторая молекула фосфата, обладающего высокой энергией в мышце. КрФ отдает молекулу Фосфата молекуле АДФ для образования АТФ, обеспечивая тем самым возможность работы мышцы в течение определенного времени.

Выглядит это так:

АДФ+ КрФ ⇒ АТФ + Кр

Запаса КрФ хватает до 9 сек. работы. При этом пик мощности приходится на 5-6 сек. Профессиональные спринтеры этот бак (запас КрФ) стараются еще больше увеличить путем тренировок до 15 секунд.

Как в первом случае, так и во втором процесс образования АТФ происходит в анаэробном режиме, без участия кислорода. Ресинтез АТФ за счет КрФ осуществляется почти мгновенно. Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной и обеспечивает работу «взрывного» характера с максимальными по силе и скорости сокращениями мышц. Так выглядит энергетический обмен при кратковременной работе, другими словами, так работает алактатная система энергообеспечения организма.

Источники энергии при непродолжительной работе.

Откуда берется энергия для организма при непродолжительной работе? В этом случае источником является животный углевод, который содержится в мышцах и печени человека — гликоген. Процесс, при котором гликоген способствует ресинтезу АТФ и выделению энергии называется Анаэробным гликолизом (Гликолитическая система энергообеспечения).

Гликолиз – это процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты (Пируват). Дальнейший метаболизм пировиноградной кислоты возможен двумя путями - аэробным и анаэробным.

При аэробной работе пировиноградная кислота (Пируват) участвует в обмене веществ и многих биохимических реакциях в организме. Она превращается в Ацетил-кофермент А, который участвует в Цикле Кребса обеспечивая дыхание в клетке. У эукариот (клетки живых организмов, которые содержат ядро, то есть в клетках человека и животных) Цикл Кребса протекает внутри митохондрии (МХ, это энергетическая станция клетки).

Цикл Кребса (цикл трикарбоновых кислот) – ключевой этап дыхания всех клеток использующих кислород, это центр пересечения многих метаболических путей в организме. Кроме энергетической роли, Циклу Кребса отводится существенная пластическая функция. Участвуя в биохимических процессах он помогает синтезировать такие важные клетки-соединения, как аминокислоты, углеводы, жирные кислоты и др.

Если кислорода недостаточно , то есть работа проводится в анаэробном режиме, тогда пировиноградная кислота в организме подвергается анаэробному расщеплению с образованием молочной кислоты (лактата)

Гликолитическая анаэробная система характеризуется большой мощностью. Начинается этот процесс практически с самого начала работы и выходит на мощность через 15-20 сек. работы предельной интенсивности, и эта мощность не может поддерживаться более 3 – 6 минут. У новичков, только начинающих заниматься спортом, мощности едва ли хватает на 1 минуту.

Энергетическими субстратами для обеспечения мышц энергией служат углеводы – гликоген и глюкоза. Всего же запаса гликогена в организме человека на 1-1,5 часа работы.

Как было сказано выше, в результате большой мощности и продолжительности гликолитической анаэробной работы в мышцах образуется значительное количество лактата (молочной кислоты).

Гликоген ⇒ АТФ + Молочная кислота

Лактат из мышц проникает в кровь и связывается с буферными системами крови для сохранения внутренней среды организма. Если уровень лактата в крови повышается, то буферные системы в какой-то момент могут не справиться, что вызовет сдвиг кислотно-щелочного равновесия в кислую сторону. При закислении кровь становится густой и клетки организма не могут получать необходимого кислорода и питания. В итоге, это вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного торможения их активности. Снижается скорость самого гликолиза, алактатного анаэробного процесса, мощность работы.

Продолжительность работы в анаэробном режиме зависит от уровня концентрации лактата в крови и степенью устойчивости мышц и крови к кислотным сдвигам.

Буферная емкость крови – способность крови нейтрализовать лактат. Чем тренированнее человек, тем больше у него буферная емкость.

Источники энергии при продолжительной работе.

Источниками энергии для организма человека при продолжительной аэробной работе, необходимые для образования АТФ служат гликоген мышц, глюкоза в крови, жирные кислоты, внутримышечный жир. Этот процесс запускается при длительной аэробной работе. Например, жиросжигание (окисление жиров) у начинающих бегунов начинается после 40 минут бега во 2-й пульсовой зоне (ПЗ). У спортсменов процесс окисления запускается уже на 15-20 минуте бега. Жира в организме человека достаточно для 10-12 часов непрерывной аэробной работы.

При воздействии кислорода молекулы гликогена, глюкозы, жира расщепляются синтезируя АТФ с выделением углекислого газа и воды. Большинство реакций происходит в митохондриях клетки.

Гликоген + Кислород ⇒ АТФ + Углекислый газ + Вода

Образование АТФ с помощью данного механизма происходит медленнее, чем с помощью источников энергии, используемых при кратковременной и непродолжительной работе. Необходимо от 2 до 4 минут, прежде чем потребность клетки в АТФ будет полностью удовлетворена с помощью рассмотренного аэробного процесса. Такая задержка вызвана тем, что требуется время, пока сердце начнет увеличивать подачу крови обогащенной кислородом мышцам, со скоростью необходимой для удовлетворения потребностей мышц в АТФ.

Жир + Кислород ⇒ АТФ + Углекислый газ + Вода

Фабрика по окислению жира в организме является самой энергоемкой. Так как при окислении углеводов, из 1 молекулы глюкозы производится 38 молекул АТФ. А при окислении 1 молекулы жира – 130 молекул АТФ. Но происходит это гораздо медленнее. К тому же для производства АТФ за счет окисления жира требуется больше кислорода, чем при окислении углеводов. Еще одна особенность окислительной, аэробной фабрики – она набирает обороты постепенно, по мере увеличения доставки кислорода и увеличения концентрации в крови выделившихся из жировой ткани жирных кислот.

Больше полезной информации и статей вы можете найти .

Если представить все энергообразующие системы (энергетический обмен) в организме в виде топливных баков, то выглядеть они будут так:

  1. Самый маленький бак – КреатинФосфат (это как 98 бензин). Он находится как бы ближе к мышце и запускается в работу быстро. Этого «бензина» хватает на 9 сек. работы.
  2. Средний бак – Гликоген (92 бензин). Этот бак находится чуть дальше в организме и топливо из него поступает с 15-30 секунды физической работы. Этого топлива хватает на 1-1,5 часа работы.
  3. Большой бак – Жир (дизельное топливо). Этот бак находится далеко и прежде, чем топливо начнет поступать из него пройдет 3-6 минут. Запаса жира в организме человека на 10-12 часов интенсивной, аэробной работы.

Все это я придумал не сам, а брал выжимки из книг, литературы, интернет-ресурсов и постарался лаконично донести до вас. Если остались вопросы — пишите.



Поделитесь с друзьями или сохраните для себя:

Загрузка...