Что такое эффективное излучение тела. Расчет эффективного излучения земной поверхности

Верхние слои почвы и воды, снежный покров и растительность сами излучают длинноволновую радиацию; эту земную радиацию чаще называют собственным излучением земной поверхности.

Интенсивность собственного излучения (т.е. отдачу лучистой энергии с единицы горизонтальной поверхности за единицу времени) можно рассчитать, зная абсолютную температуру земной поверхности. По закону Стефана-Больцмана излучение с каждого квадратного сантиметра абсолютно черной поверхности в калориях за одну минуту при абсолютной температуре Т равно

где постоянная σ = 8,2·10-11 кал/см2.

Земная поверхность излучает почти как абсолютно черное тело, и интенсивность ее излучения Es может быть определена по формуле (56).

При +15°С, или 288 К, Es равно 0,6 кал/(см2·мин).Столь большая отдача радиации с земной поверхности приводила бы к быстрому ее охлаждению, если бы этому не препятствовал обратный процесс – поглощение солнечной и атмосферной радиации земной поверхностью.

Абсолютные температуры земной поверхности заключаются между 180 и 350°. При таких температурах испускаемая радиация практически заключается в пределах 4 - 120 мк,а максимум ее энергии приходится на длины волн 10 - 15 мк.Следовательно, вся эта радиация инфракрасная, не воспринимаемая глазом (рис. 8).

Рис. 8. Излучение абсолютно черного тела при температурах 200, 250 и 300 К

Атмосфера нагревается, поглощая как солнечную радиацию (хотя в сравнительно небольшой доле, около 15% всего ее количества, приходящего к Земле), так и собственное излучение земной поверхности. Кроме того, она получает тепло от земной поверхности путем теплопроводности, а также при испарении и последующей конденсации водяного пара. Будучи нагретой, атмосфера излучает сама. Так же как и земная поверхность, она излучает невидимую инфракрасную радиацию примерно в том же диапазоне длин волн.

Большая часть (70%) атмосферной радиации приходит к земной поверхности, остальная часть уходит в мировое пространство. Атмосферную радиацию, приходящую к земной поверхности, называют встречным излучением (Еа) ; встречным потому, что оно направлено навстречу собственному излучению земной поверхности. Земная поверхность поглощает это встречное излучение почти целиком (на 90 - 99%). Таким образом, оно является для земной поверхности важным источником тепла в дополнение к поглощенной солнечной радиации.

Встречное излучение возрастает с увеличением облачности, поскольку облака сами сильно излучают.

Для равнинных станций умеренных широт средняя интенсивность встречного излучения (на каждый квадратный сантиметр площади горизонтальной земной поверхности в одну минуту) порядка 0,3 – 0,4 кал, на горных станциях – порядка 0,1 – 0,2 кал. Это уменьшение встречного излу-чения с высотой объясняется уменьшением содержания водяного пара. Наибольшее встречное излуче-ние – у экватора, где атмосфера наиболее нагрета и богата водяным паром. Здесь оно составляет 0,5 – 0,6 кал/(см2·мин)в среднем годовом, а к полярным широтам убывает до 0,3 кал/(см2·мин).

Водяной пар играет основную роль, как в поглощении земного излучения, так и во встречном излучении.

Встречное излучение всегда несколько меньше земного. Поэтому ночью, когда солнечной радиации нет и к земной поверхности приходит только встречное излучение, земная поверхность теряет тепло за счет положительной разности между собственным и встречным излучением. Эту разность между собственным излучением земной поверхности и встречным излучением атмосферы называют эффективным излучением (Ее)

Эффективное излучение представляет собой чистую потерю лучистой энергии, а следовательно, и тепла с земной поверхности ночью, и именно оно измеряется специальными приборами – пиргеометрами. Собственное излучение можно определить по закону Стефана-Больцмана, зная температуру земной поверхности, а встречное излучение вычислить по формуле (57).

Интенсивность эффективного излучения в ясные ночи состав­ляет около 0,10 - 0,15 кал/(см2·мин)на равнинных станциях умеренных широт и до 0,20 кал/(см2·мин) –на высокогорных станциях (где встречное излучение меньше). С возрастанием облачности, увеличивающей встречное излучение, эффективное излучение убывает. В облачную погоду оно гораздо меньше, чем в ясную; стало быть, меньше и ночное охлаждение земной поверхности.

Эффективное излучение, конечно, существует и в дневные часы. Но днем оно перекрывается или частично компенсируется поглощенной солнечной радиацией. Поэтому земная поверхность днем теплее, чем ночью, вследствие чего, между прочим, и эффективное излучение днем больше.

В общем земная поверхность в средних широтах теряет эффективным излучением примерно половину того количества тепла, которое она получает от поглощенной радиации.

Поглощая земное излучение и посылая встречное излучение к земной поверхности, атмосфера тем самым уменьшает охлаждение последней в ночное время суток. Днем же она мало препятствует нагреванию земной поверхности солнечной радиацией. Это явление атмосферы на тепловой режим земной поверхности носит название тепличного эффектавследствие внешней аналогии с действием стекол теплицы.

Земная поверхность, поглощая коротковолновую суммарную радиацию, в то же время теряет тепло путем длинноволнового излучения. Это тепло частично уходит в мировое пространство, а в значительной части поглощается атмосферой, создавая так называемый «парниковый эффект». В этом поглощении большое участие принимают водяной пар, озон и углекислый газ, а так же пыль. Вследствие поглощения излучения Земли атмосфера нагревается и, в свою очередь, приобретает способность излучения длинноволновой радиации. Часть этого излучения достигает земной поверхности. Таким образом, в атмосфере создаются два потока длинноволновой радиации, направленных в противоположные стороны. Один из них, направленный вверх, состоит из земного излучения Е з , а другой поток, направленный вниз, представляет радиацию атмосферы Е а . Разность Е з Е а называют эффективным излучением Земли Е эф. Оно показывает фактическую потерю тепла земной поверхностью. Так как температура атмосферы чаще всего ниже температуры земной поверхности, поэтому в большинстве случаев, эффективное излучение больше 0. Это означает, что вследствие длинноволнового излучения земная поверхность теряет энергию. Лишь при очень сильных инверсиях температуры зимой, а весной при таянии снега и при большой облачности излучение меньше нуля. Такие условия наблюдаются, например, в области Сибирского антициклона.

Величина эффективного излучения определяется в основном температурой подстилающей поверхности, температурной стратификацией атмосферы, влагосодержанием воздуха и облачностью. Годовые величины Е эф наземном шаре изменяются по сравнению с суммарной радиацией значительно меньше (от 840 до 3750 МДж/м 2). Это обусловлено зависимостью эффективного излучения от температуры и абсолютной влажности. Повышение температуры способствует росту эффективного излучения, но одновременно оно сопровождается ростом влагосодержания, которое уменьшает это излучение. Наибольшие годовые суммы Е эф приурочены к областям тропических пустынь, где оно достигает 3300–3750 МДж/м 2 . Такой большой расход длинноволновой радиации здесь обусловлен высокой температурой подстилающей поверхности, сухим воздухом и безоблачным небом. На тех же широтах, но на океанах и в пассатных областях, из-за уменьшения температуры, повышения влажности и увеличения облачности Е эф – вдвое меньше и составляет около 1700 МДж/м 2 в год. По тем же причинам на экваторе Е эф еще меньше. Наименьшие потери длинноволновой радиации наблюдаются в полярных районах. Годовые суммы Е эф в Арктике, Антарктике составляют около 840 МДж/м 2 . В умеренных широтах годовые значения Е эф изменяются в пределах 840–1250 МДж/м 2 на океанах, 1250–2100 МДж/м 2 на суше (Алисов Б.П., Полтараус Б.В., 1974).

Альбедо Земли Процентное отношение солнечной радиации, отданной земным шаром (вместе с атмосферой) обратно в мировое пространство, к солнечной радиации, поступившей на границу атмосферы. Отдача солнечной радиации Землей слагается из отражения от земной поверхности, рассеяния прямой радиации атмосферой в мировое пространство (обратного рассеяния) и отражения от верхней поверхности облаков. А. 3. в видимой части спектра (визуальное)-около 40%. Для интегрального потока солнечной радиации интегральное (энергетическое) А. 3. около 35%. В отсутствие облаков визуальное А. 3. было бы около 15%.

Излучение земной поверхности - тепловое инфракрасное, не воспринимаемое глазом излучение земной поверхности с длинами волн от 3 до 80 мкм. Поток собственного излучения земной поверхности направлен вверх и почти целиком поглощается атмосферой, нагревая ее. За счет собственного излучения земная поверхность теряет тепло. Атмосфера Земли поглощает земное излучение и снова возвращает большую его часть к Земле (встречное излучение).

Эффективное излучение земной поверхности - разность собственного излучения земной поверхности и поглощенного ею встречного излучения атмосферы.

23.Тепловой баланс земной поверхности

Тепловой баланс земной поверхности - алгебраическая сумма всех видов прихода и расхода тепла на поверхность суши и океана. Характер теплового баланса и его энергетический уровень определяют особенности и интенсивность большинства экзогенных процессов. Основными составляющими теплового баланса океана являются:

Радиационный баланс;

Затрата тепла на испарение;

Турбулентный теплообмен между поверхностью океана и атмосферой;

Вертикальный турбулентный теплообмен поверхности океана с нижележащими слоями; и

Горизонтальная океаническая адвекция.

24. Теплопроводность почвы. Законы Фурье.

Пористость - порошкообразное измельчение массы - сильно затрудняет проведение тепла в почве, так как прикосновение отдельных частичек ее в высшей степени несовершенно, а лежащий между ними воздух обладает очень слабою теплопроводимостью. Влияние воды на передачу тепла в глубь почвы может быть разъяснена двумя следующими случаями. Во-первых, если почва только влажна, т. е. все водяные частички удерживаются большой капиллярной силой, вследствие чего затрудняется их циркуляция, то вода не может играть заметной роли при распределении теплоты в такой почве. В этом случае влажная почва относительно распределения теплоты по почвенным слоям будет действовать почти как сухая, т. е. как дурной проводник теплоты.

Теплопроводность влажной почвы больше, чем сухой, так как вода до некоторой степени вытесняет частицы воздуха, обладающие наислабейшею способностью проводить теплоту; притом почва теряет и свою пористость. Во-вторых, если почва настолько мокрая, что вода до некоторой степени может циркулировать, то подобная почва при нагревании сверху не передает нагретых водяных частичек в более глубокие горизонты; они находятся уже в положении самом благоприятном - устойчивого равновесия. Но если почва будет охлаждаться сверху, вследствие ли холодного ветра или лучеиспускания в мировое пространство, то охлажденные верхние частички жидкости получат стремление опускаться вниз, на место более теплых и глубже лежащих; вследствие чего охлаждение почвы будет чувствоваться на большей глубине, чем нагревание ее, но именно потому, что при охлаждении почвы участвуют большие массы частичек воды, в ней не обнаруживаются при этом такие крайности, как при противоположном явлении.

Перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия составляющих его частиц. Приводит к выравниванию температуры тела. Обычно количество переносимой энергии, определяемое как плотность теплового потока, пропорционально градиенту температуры -закон Фурье.

Большое количество энергии поступает на нашу планету в виде солнечного излучения. Эта энергия составляет примерно 1,7 1017 Вт. Количество энергии, используемой в настоящее время, составляет около 1010 кВт. Если мысленно представить, что примерно 1% площади планеты приспособлен для улавливания солнечной энергии с помощью коллекторов излучения эффективностью 10%, то можно собрать 1011 кВт энергии. Путем вычисления при условии, что население Земли составляет определенное число людей, каждый из которых потребляет некоторое количество энергии, можно определить, достаточно ли этой энергии. Так, нынешнее население Земли составляет около 3 109 человек. Допустим, что оно увеличилось до 5 109 человек и каждый потребляет примерно 10 кВт (что превышает наши потребности), то и в этом случае полученной энергии было бы больше, чем нужно.[ ...]

Для создания передвижных экранов используют различные материалы. Защита от альфа-излучения достигается применением экранов из обычного или органического стекла толщиной несколько миллиметров. Достаточной защитой от этого вида излучения является слой воздуха в несколько сантиметров. Для защиты от бета-излучения экраны изготавливают из алюминия или пластмассы (органическое стекло). От гамма- и рентгеновского излучения эффективно защищают свинец, сталь, вольфрамовые сплавы. Смотровые системы изготавливают из специальных прозрачных материалов, например, свинцового стекла. От нейтронного излучения защищают материалы, содержащие в составе водород (вода, парафин), а также бериллий, графит, соединения бора и т.д. Бетон также можно использовать для защиты от нейтронов.[ ...]

Озонный слой является защитным экраном от проникающего ультрафиолетового (УФ) солнечного излучения в области длин волн 240-320 нм. Поскольку УФ-В излучение эффективно поглощается нуклеиновыми кислотами в живых клетках, оно представляет особую опасность для всего живого. Кроме этого, в результате облучения жестким ультрафиолетовым излучением увеличивается вероятность (а следовательно, и частота появления) заболевания раком кожи (мелонома и карцинома кожи). Подсчитано , что уменьшение озонного слоя всего на 5 % приведет к увеличению числа случаев заболевания раком кожи у людей в среднем на 10 % (см. п. 8.2).[ ...]

Эти расчеты вселяют оптимизм, но справедливо напомнить, что в данный момент еще нет конструкций коллекторов излучения эффективностью 10%, работающих экономично. Утверждение «солнечная энергия доступна» обманчиво, так как стоимость энергии - это лишь один компонент стоимости преобразованной энергии или топлива (электричества, водорода, метилового спирта).[ ...]

ДЛИННОВОЛНОВАЯ РАДИАЦИЯ. Электромагнитная радиация, испускаемая земной поверхностью н атмосферой, т. е. почти полностью в интервале от 4 до 120 мкм. Ср. атмосферное излучение, земное излучение, встречное излучение, эффективное излучение земной поверхности, коротковолновая радиация.[ ...]

ЕСТЕСТВЕННАЯ РАДИАЦИЯ [лат. гас ю сияние, блеск] - радиация, которой человек подвергается на Земной поверхности,- включает у-излу-чение радиоактивных материалов Земли, излучение радионуклидов в тканях организма, попадающих туда с пищей, и космическое излучение. Эффективная эквивалентная доза от этих источников без учета облучения легких от вдыхания в жилых помещениях радо-на-торона и их продуктов распада для населения страны в 1990 г. составвла в среднем около 0,09 (0,07-0,23) бэр.[ ...]

В ряде других работ системы с оптическим гетеродинированием использовались для установления когерентной связи на длинах волн X = 3,39 мкм и X - 10,6 мкм . Было выяснено, что с увеличением длины волны использованного излучения эффективность оптического гетеродинирования в атмосфере растет. Это также согласуется с проведенным выше рассмотрением, ибо радиус когерентности рг, как видно из формулы (3.26), растет, как ХвЬ.[ ...]

Эта оценка завышена, поскольку предположение об излучающем канале как об абсолютно черном теле является слишком грубым. Однако она убеждает нас в том, что преобразование электрической энергии в световую в проводящем канале молнии происходит достаточно эффективно. Другой особенностью свечения канала молнии является то, что большая часть излучения соответствует ультрафиолетовой части спектра. Действительно, для абсолютно черного тела с температурой 30 ООО К максимум энергии излучения согласно закону Вина соответствует длине волны 0,1 мкм. Хотя реально в результате того, что воздушная плазма прозрачна для вакуумного ультрафиолета, этот максимум смещается в область более длинных волн, основные излучательные потери рассматриваемой горячей воздушной плазмы связаны с ультрафиолетовым излучением. При этом, поскольку ультрафиолетовое излучение эффективно поглощается в реальном воздухе, спектр излучения молнии, регистрируемый на большом расстоянии, оказывается искаженным.[ ...]

Принцип действия радиационного контура или петли состоит в том, что какое-либо рабочее вещество или носитель, способный циркулировать в замкнутой системе и легко активироваться в активной зоне реактора под действием нейтронов, используется затем вне реактора в качестве излучателя. В первую очередь, естественно, были рассмотрены системы с жидким носителем, хотя в принципе можно использовать и твердый носитель, например, в виде шариков. Преимущества радиационных контуров состоят в том, что при их помощи можно быстро создать очень мощный источник излучения, эффективно использовать нейтроны утечки для целей облучения и сравнительно быстро ликвидировать источник в случае необходимости.

Разница между собственным излучением тела и встречным излучением атмосферы называется эффективным излучением. Его значение и выражает действительный поток тепла от Земли или воды к атмосфере. В отдельных случаях может быть поток тепла и от атмосферы к Земле, например, при поступлении морского теплого воздуха на холодную материковую поверхность зимой.

Встречное излучение показывает роль атмосферы в тепловом режиме географической оболочки.

Молекулы газов воздуха практически свободно пропускают коротковолновые солнечные лучи. На земной поверхности лучистая энергия превращается в длинноволновую тепловую. Переменная часть атмосферы - водяной пар, углекислый газ, капельки воды, льдинки и другие взвеси - поглощают, подобно стеклу оранжерей или теплицы, длинноволновые тепловые лучи, усиливая встречное излучение. Даже в ясные ночи оно составляет 70% от прямого, а в пасмурные достигает 100%- Свойство атмосферы пропускать солнечные лучи к Земле и задерживать тепловое излучение называется оранжерейным, или тепличным эффектом.

Величина эффективного излучения зависит от ряда факторов:

  1. От температуры почвы или воды: чем она выше, тем больше тело теряет тепла излучением: В жаркий летний день и земля, и вода много излучают тепла в воздух и температура его повышается. Теплый воздух дает большой и встречный поток. Возрастает общий уровень эффективного излучения. Ночью, когда нагревание почвы и воды прекращается, уменьшается и их излучение. Перед утром оно становится совсем незначительным. Соответственно понижается и температура воздуха.
  2. От влажности воздуха: водяной пар улавливает длинноволновое излучение и удерживает тепло. Влажная атмосфера посылает к Земле значительный встречный поток, эффективное излучение уменьшается. По этой причине во влажных климатах и при влажной погоде ночи не бывают так холодны, как в сухую погоду, и в странах с сухим климатом.
  3. От туманов и облаков: капли воды облаков и туманов действуют, как и водяной пар, но в еще большей степени. Ночи при туманной и облачной погоде бывают обычно теплыми.
  4. От близости или удаленности водоемов: водная масса, будучи теплоемкой, дольше, чем суша, удерживает тепло. Увеличением влажности, образованием облаков и туманов водоемы снимают эффективное излучение. По этой причине наибольшая потеря тепла зимой и ночью и, следовательно, резкие колебания ночной и дневной температур свойственны сухим внутриматериковым странам - Центральной и Средней Азии, Восточной Сибири и Антарктиде.
  5. От абсолютной высоты местности: в горах, с уменьшением плотности воздуха уменьшается встречное и увеличивается эффективное излучение.
  6. От растительности: мощный растительный покров, особенно леса, снижают эффективное излучение. В пустынях оно резко увеличивается.
  7. От характера почво-грунтов: мощные и рыхлые почвы дольше удерживают и больше излучают тепло, каменистые почвы и особенно пески пустынь скорее его теряют и остывают.


Поделитесь с друзьями или сохраните для себя:

Загрузка...