Что такое функция и график. Как решать задачи на функцию

Функции и их графики - одна из самых увлекательных тем в школьной математике. Жаль только, что проходит она... мимо уроков и мимо учеников. На нее вечно не хватает времени в старших классах. А те функции, которые проходят в 7-м классе, - линейная функция и парабола - слишком просты и незамысловаты, чтобы показать все разнообразие интересных задач.

Умение строить графики функций необходимо для решения задач с параметрами на ЕГЭ по математике. Это одна из первых тем курса математического анализа в вузе. Это настолько важная тема, что мы в ЕГЭ-Студии проводим по ней специальные интенсивы для старшеклассников и учителей, в Москве и онлайн. И часто участники говорят: «Жаль, что мы не знали этого раньше».

Но это не все. Именно с понятия функции и начинается настоящая, «взрослая» математика. Ведь сложение и вычитание, умножение и деление, дроби и пропорции - это все-таки арифметика. Преобразования выражений - это алгебра. А математика - наука не только о числах, но и о взаимосвязях величин. Язык функций и графиков понятен и физику, и биологу, и экономисту. И, как сказал Галилео Галилей, «Книга природы написана на языке математики» .

Точнее, Галилео Галилей сказал так:«Математика есть алфавит, посредством которого Господь начертал Вселенную».

Темы для повторения:

1. Построим график функции

Знакомая задача! Такие встречались в вариантах ОГЭ по математике. Там они считались сложными. Но сложного ничего здесь нет.

Упростим формулу функции:

График функции - прямая с выколотой точкой

2. Построим график функции

Выделим в формуле функции целую часть:

График функции - гипербола, сдвинутая на 3 вправо по x и на 2 вверх по y и растянутая в 10 раз по сравнению с графиком функции

Выделение целой части - полезный прием, применяемый в решении неравенств, построении графиков и оценке целых величин в задачах на числа и их свойства. Он встретится вам также на первом курсе, когда придется брать интегралы.

3. Построим график функции

Он получается из графика функции растяжением в 2 раза, отражением по вертикали и сдвигом на 1 вверх по вертикали

4. Построим график функции

Главное - правильная последовательность действий. Запишем формулу функции в более удобном виде:

Действуем по порядку:

1) График функции y=sinx сдвинем на влево;

2) сожмем в 2 раза по горизонтали,

3) растянем в 3 раза по вертикали,

4) сдвинем на 1 вверх

Сейчас мы построим несколько графиков дробно-рациональных функций. Чтобы лучше понять, как мы это делаем, читайте статью «Поведение функции в бесконечности. Асимптоты».

5. Построим график функции

Область определения функции:

Нули функции: и

Прямая x = 0 (ось Y) - вертикальная асимптота функции. Асимптота - прямая, к которой бесконечно близко подходит график функции, но не пересекает ее и не сливается с ней (смотри тему «Поведение функции в бесконечности. Асимптоты»)

Есть ли другие асимптоты у нашей функции? Чтобы выяснить это, посмотрим, как ведет себя функция, когда x стремится к бесконечности.

Раскроем скобки в формуле функции:

Если x стремится к бесконечности, то стремится к нулю. Прямая является наклонной асимптотой к графику функции.

6. Построим график функции

Это дробно-рациональная функция.

Область определения функции

Нули функции: точки - 3, 2, 6.

Промежутки знакопостоянства функции определим с помощью метода интервалов.

Вертикальные асимптоты:

Если x стремится к бесконечности, то у стремится к 1. Значит, - горизонтальная асимптота.

Вот эскиз графика:

Еще один интересный прием - сложение графиков.

7. Построим график функции

Если x стремится к бесконечности, то и график функции будет бесконечно близко подходить к наклонной асимптоте

Если x стремится к нулю, то функция ведет себя как Это мы и видим на графике:

Вот мы и построили график суммы функций. Теперь график произведения!

8. Построим график функции

Область определения этой функции - положительные числа, поскольку только для положительных x определен

Значения функции равны нулю при (когда логарифм равен нулю), а также в точках, где то есть при

При , значение {cos x} равно единице. Значение функции в этих точках будет равно

9. Построим график функции

Функция определена при Она четная, поскольку является произведением двух нечетных функций и График симметричен относительно оси ординат.

Нули функции - в точках, где то есть при

Если x стремится к бесконечности, стремится к нулю. Но что же будет, если x стремится к нулю? Ведь и x, и sin x будут становиться меньше и меньше. Как же будет вести себя частное ?

Оказывается, что если x стремится к нулю, то стремится к единице. В математике это утверждение носит название «Первого замечательного предела».

А как же производная? Да, наконец-то мы до нее добрались. Производная помогает более точно строить графики функций. Находить точки максимума и минимума, а также значения функции в этих точках.

10. Построим график функции

Область определения функции - все действительные числа, поскольку

Функция нечетна. Ее график симметричен относительно начала координат.

При x=0 значение функции равно нулю. При значения функции положительны, при отрицательны.

Если x стремится к бесконечности, то стремится к нулю.

Найдем производную функции
По формуле производной частного,

Если или

В точке производная меняет знак с «минуса» на «плюс», - точка минимума функции.

В точке производная меняет знак с «плюса» на «минус», - точка максимума функции.

Найдем значения функции при x=2 и при x=-2.

Графики функций удобно строить по определенному алгоритму, или схеме. Помните, вы изучали ее в школе?

Общая схема построения графика функции:

1. Область определения функции

2. Область значений функции

3. Четность - нечетность (если есть)

4. Периодичность (если есть)

5. Нули функции (точки, в которых график пересекает оси координат)

6. Промежутки знакопостоянства функции (то есть промежутки, на которых она строго положительна или строго отрицательна).

7. Асимптоты (если есть).

8. Поведение функции в бесконечности

9. Производная функции

10. Промежутки возрастания и убывания. Точки максимума и минимума и значения в этих точках.

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos . Для ввода функций воспользуйтесь левой колонкой. Вводить можно вручную либо с помощью виртуальной клавиатуры внизу окна. Для увеличения окна с графиком можно скрыть как левую колонку, так и виртуальную клавиатуру.

Преимущества построения графиков онлайн

  • Визуальное отображение вводимых функций
  • Построение очень сложных графиков
  • Построение графиков, заданных неявно (например эллипс x^2/9+y^2/16=1)
  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta))

С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.

Национальный научно-исследовательский университет

Кафедра прикладной геологии

Реферат по высшей математике

На тему: «Основные элементарные функции,

их свойства и графики»

Выполнил:

Проверил:

преподаватель

Определение. Функция, заданная формулой у=а х (где а>0, а≠1), называется показательной функцией с основанием а.

Сформулируем основные свойства показательной функции:

1. Область определения - множество (R) всех действительных чисел.

2. Область значений - множество (R+) всех положительных действительных чисел.

3. При а > 1 функция возрастает на всей числовой прямой; при 0<а<1 функция убывает.

4. Является функцией общего вида.

, на интервале xÎ [-3;3] , на интервале xÎ [-3;3]

Функция вида у(х)=х n , где n – число ÎR, называется степенной функцией. Число n может принимать раличные значения: как целые, так и дробные, как четные, так и нечетные. В зависимости от этого, степенная функция будет иметь разный вид. Рассмотрим частные случаи, которые являются степенными функциями и отражают основные свойства данного вида кривых в следующем порядке: степенная функция у=х² (функция с четным показателем степени – парабола), степенная функция у=х³ (функция с нечетным показателем степени – кубическая парабола) и функция у=√х (х в степени ½) (функция с дробным показателем степени), функция с отрицательным целым показателем (гипербола).

Степенная функция у=х²

1. D(x)=R – функция определена на все числовой оси;

2. E(y)= и возрастает на промежутке

Степенная функция у=х³

1. График функции у=х³ называется кубической параболой. Степенная функция у=х³ обладает следующими свойствами:

2. D(x)=R – функция определена на все числовой оси;

3. E(y)=(-∞;∞) – функция принимает все значения на своей области определения;

4. При х=0 у=0 – функция проходит через начало координат O(0;0).

5. Функция возрастает на всей области определения.

6. Функция является нечетной (симметрична относительно начала координат).

, на интервале xÎ [-3;3]

В зависимости от числового множителя, стоящего перед х³, функция может быть крутой/пологой и возрастать/убывать.

Степенная функция с целым отрицательным показателем:

Если показатель степени n является нечетным, то график такой степенной функции называется гиперболой. Степенная функция с целым отрицательным показателем степени обладает следующими свойствами:

1. D(x)=(-∞;0)U(0;∞) для любого n;

2. E(y)=(-∞;0)U(0;∞), если n – нечетное число; E(y)=(0;∞), если n – четное число;

3. Функция убывает на всей области определения, если n – нечетное число; функция возрастает на промежутке (-∞;0) и убывает на промежутке (0;∞), если n – четное число.

4. Функция является нечетной (симметрична относительно начала координат), если n – нечетное число; функция является четной, если n – четное число.

5. Функция проходит через точки (1;1) и (-1;-1), если n – нечетное число и через точки (1;1) и (-1;1), если n – четное число.

, на интервале xÎ [-3;3]

Степенная функция с дробным показателем

Степенная функция с дробным показателем вида (картинка) имеет график функции, изображенный на рисунке. Степенная функция с дробным показателем степени обладает следующими свойствами: (картинка)

1. D(x) ÎR, если n – нечетное число и D(x)= , на интервале xÎ , на интервале xÎ [-3;3]

Логарифмическая функция у = log a x обладает следующими свойствами:

1. Область определения D(x)Î (0; + ∞).

2. Область значений E(y) Î (- ∞; + ∞)

3. Функция ни четная, ни нечетная (общего вида).

4. Функция возрастает на промежутке (0; + ∞) при a > 1, убывает на (0; + ∞) при 0 < а < 1.

График функции у = log a x может быть получен из графика функции у = а х с помощью преобразования симметрии относительно прямой у = х. На рисунке 9 построен график логарифмической функции для а > 1, а на рисунке 10 - для 0 < a < 1.

; на интервале xÎ ; на интервале xÎ

Функции y = sin х, у = cos х, у = tg х, у = ctg х называют тригонометрическими функциями.

Функции у = sin х, у = tg х, у = ctg х нечетные, а функция у = соs х четная.

Функция y = sin (х).

1. Область определения D(x) ÎR.

2. Область значений E(y) Î [ - 1; 1].

3. Функция периодическая; основной период равен 2π.

4. Функция нечетная.

5. Функция возрастает на промежутках [ -π/2 + 2πn; π/2 + 2πn] и убывает на промежутках [ π/2 + 2πn; 3π/2 + 2πn], n Î Z.

График функции у = sin (х) изображен на рисунке 11.

Для начала попробуй найти область определения функции:

Справился? Сравним​ ответы:

Все верно? Молодец!

Теперь попробуем найти область значений функции:

Нашел? Сравниваем:

Сошлось? Молодец!

Еще раз поработаем с графиками, только теперь чуть-чуть посложнее - найти и область определения функции, и область значений функции.

Как найти и область определения и область значений функции (продвинутый вариант)

Вот что получилось:

С графиками, я думаю, ты разобрался. Теперь попробуем в соответствии с формулами найти область определения функции (если ты не знаешь как это сделать, прочитай раздел про ):

Справился? Сверим ответы :

  1. , так как подкоренное выражение должно быть больше или равно нулю.
  2. , так как на ноль делить нельзя и подкоренное выражение не может быть отрицательным.
  3. , так как, соответственно при всех.
  4. , так как на ноль делить нельзя.

Однако, у нас остался еще один не разобранный момент…

Еще раз повторю определение и сделаю на нем акцент:

Заметил? Слово «единственный» - это очень-очень важный элемент нашего определения. Постараюсь объяснить тебе на пальцах.

Допустим, у нас есть функция, заданная прямой. . При, мы подставляем данное значение в наше «правило» и получаем, что. Одному значению соответствует одно значение. Мы даже можем составить таблицу различных значений и построить график данной функции, чтобы убедится в этом.

«Смотри! - скажешь ты, -« » встречается два раза!» Так быть может парабола не является функцией? Нет, является!

То, что « » встречается два раза далеко не повод обвинять параболу в неоднозначности!

Дело в том, что, при расчёте для, мы получили один игрек. И при расчёте с мы получили один игрек. Так что все верно, парабола является функцией. Посмотри на график:

Разобрался? Если нет, вот тебе жизненный пример сооовсем далекий от математики!

Допустим, у нас есть группа абитуриентов, познакомившихся при подаче документов, каждый из которых в разговоре рассказал, где он живет:

Согласись, вполне реально, что несколько ребят живут в одном городе, но невозможно, чтобы один человек жил в нескольких городах одновременно. Это как бы логичное представление нашей «параболы» - нескольким разным икс соответствует один и тот же игрек.

Теперь придумаем пример, когда зависимость не будет функцией. Допустим, эти же ребята рассказывали, на какие специальности они подали документы:

Здесь у нас совершенно другая ситуация: один человек может спокойно подать документы как на одно, так и на несколько направлений. То есть одному элементу множества ставится в соответствие несколько элементов множества. Соответственно, это не функция.

Проверим твои знания на практике.

Определи по рисункам, что является функцией, а что нет:

Разобрался? А вот и ответы :

  • Функцией является - В,Е.
  • Функцией не является - А, Б, Г, Д.

Ты спросишь почему? Да вот почему:

На всех рисунках кроме В) и Е) на один приходится несколько!

Уверена, теперь, ты с легкостью отличишь функцию от не функции, скажешь, что такое аргумент и что такое зависимая переменная, а так же определишь область допустимых значений аргумента и область определения функции. Приступаем к следующему разделу - как задать функцию?

Способы задания функции

Как ты думаешь, что означают слова «задать функцию» ? Правильно, это значит объяснить всем желающим, о какой функции в данном случае идет речь. Причем объяснить так, чтобы каждый понял тебя правильно и нарисованные людьми по твоему объяснению графики функций были одинаковы.

Как это можно сделать? Как задать функцию? Самый простой способ, который уже не раз применялся в этой статье - с помощью формулы. Мы пишем формулу, и, подставляя в нее значение, высчитываем значение. А как ты помнишь, формула - это закон, правило, по которому нам и другому человеку становится ясно, как икс превращается в игрек.

Обычно, именно так и делают - в заданиях мы видим уже готовые функции, заданные формулами, однако, существуют и другие способы задать функцию, про которые все забывают, в связи с чем вопрос «как еще можно задать функцию?» ставит в тупик. Разберемся во всем по порядку, а начнем с аналитического способа.

Аналитический способ задания функции

Аналитический способ это и есть задание функции с помощью формулы. Это самый универсальный и исчерпывающий и однозначный способ. Если у тебя есть формула, то ты знаешь о функции абсолютно все - ты можешь составить по ней табличку значений, можешь построить график, определить, где функция возрастает, а где убывает, в общем, исследовать ее по полной программе.

Рассмотрим функцию. Чему равно?

«Что это значит?» - спросишь ты. Сейчас объясню.

Напомню, что в записи выражение в скобках называется аргументом. И этот аргумент может быть любым выражением, не обязательно просто. Соответственно, каким бы ни был аргумент (выражение в скобках), мы его запишем вместо в выражении.

В нашем примере получится так:

Рассмотрим еще задание, связанное с аналитическим способом задания функции, которое будет у тебя на экзамене.

Найдите значение выражения, при.

Уверена, что сначала, ты испугался, увидев такое выражение, но в нем нет абсолютно ничего страшного!

Все как и в прошлом примере: каким бы ни был аргумент (выражение в скобках), мы его запишем вместо в выражении. Например, для функции.

Что же нужно сделать в нашем примере? Вместо надо написать, а вместо - :

сократить получившееся выражение:

Вот и все!

Самостоятельная работа

Теперь попробуй самостоятельно найти значение следующих выражений:

  1. , если
  2. , если

Справился? Сравним наши ответы: Мы привыкли, что функция имеет вид

Даже в наших примерах мы задаем функцию именно таким образом, однако аналитически можно задать функцию в неявном виде, например.

Попробуй построить эту функцию самостоятельно.

Справился?

Вот как строила ее я.

Какое уравнение мы в итоге вывели?

Правильно! Линейное, а это значит, что графиком будет прямая линия. Сделаем табличку, чтобы определить, какие точки принадлежат нашей прямой:

Вот как раз то, о чем мы говорили… Одному соответствует несколько.

Попробуем нарисовать то, что получилось:

Является ли то, что у нас получилось функцией?

Правильно, нет! Почему? Попробуй ответить на этот вопрос с помощью рисунка. Что у тебя вышло?

«Потому что одному значению соответствует несколько значений!»

Какой вывод мы можем из этого сделать?

Правильно, функция не всегда может быть выражена явно, и не всегда то, что «замаскировано» под функцию является функцией!

Табличный способ задания функции

Как следует из названия, этот способ представляет собой простую табличку. Да, да. Наподобие той, которой мы с тобой уже составляли. Например:

Здесь ты сразу подметил закономерность - игрек в три раза больше чем икс. А теперь задание на «очень хорошо подумать»: как ты считаешь, равносильная ли функция, заданная в виде таблицы, функции?

Не будем долго рассуждать, а будем рисовать!

Итак. Рисуем функцию, заданную обоями способами:

Видишь разницу? Дело совсем не в отмеченных точках! Присмотрись внимательнее:

Теперь увидел? Когда мы задаем функцию табличным способом, мы на графике отражаем только те точки, которые есть у нас в таблице и линия (как в нашем случае) проходит только через них. Когда мы задаем функцию аналитическим способом, мы можем взять любые точки, и наша функция ими не ограничивается. Вот такая вот особенность. Запоминай!

Графический способ построения функции

Графический способ построения функции не менее удобен. Мы рисуем нашу функцию, а другой заинтересованный человек может найти чему равен игрек при определенном икс и так далее. Графический и аналитический способы одни из самых распространенных.

Однако, здесь нужно помнить о чем мы с тобой говорили в самом начале - не каждая «загогулина» нарисованная в системе координат является функцией! Вспомнил? На всякий случай скопирую тебе сюда определение, что функцией является:

Как правило, люди обычно называют именно те три способа задания функции, которые мы разобрали - аналитический (с помощью формулы), табличный и графический, напрочь забывая о том, что функцию можно словесно описать. Как это? Да очень просто!

Словесное описание функции

Как же описать функцию словесно? Возьмем наш недавний пример - . Данную функцию можно описать «каждому действительному значению икс соответствует его утроенное значение». Вот и все. Ничего сложного. Ты, конечно, возразишь - «есть настолько сложные функции, которые словесно задать просто невозможно!» Да, есть и такие, но есть функции, которые описать словесно легче, чем задать формулой. Например: «каждому натуральному значению икс соответствует разница между цифрами, из которых он состоит, при этом за уменьшаемое берется наибольшее цифра, содержащиеся в записи числа». Теперь рассмотрим, как наше словесное описание функции реализуется на практике:

Наибольшая цифра в данном числе - , соответственно, - уменьшаемое, тогда:

Основные виды функций

Теперь перейдем к самому интересному - рассмотрим основные виды функций, с которыми ты работал/работаешь и будешь работать в курсе школьной и институтской математики, то есть познакомимся с ними, так сказать и дадим им краткую характеристику. Более подробно про каждую функцию читай в соответствующем разделе.

Линейная функция

Функция вида, где, - действительные числа.

Графиком данной функции служит прямая, поэтому построение линейной функции сводится к нахождению координат двух точек.

Положение прямой на координатной плоскости зависит от углового коэффициента.

Область определения функции (aka область допустимых значений аргумента) - .

Область значений - .

Квадратичная функция

Функция вида, где

Графиком функции является парабола, при ветви параболы направлены вниз, при — вверх.

Многие свойства квадратичной функции зависят от значения дискриминанта. Дискриминант вычисляется по формуле

Положение параболы на координатной плоскости относительно значения и коэффициента показаны на рисунке:

Область определения

Область значений зависит от экстремума данной функции (точки вершины параболы) и коэффициента (направления ветвей параболы)

Обратная пропорциональность

Функция, задаваемая формулой, где

Число называется коэффициентом обратной пропорциональности. В зависимости от того, какое значение, ветви гиперболы находятся в разных квадратах:

Область определения - .

Область значений - .

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

1. Функцией называется правило, по которому каждому элементу множества ставится в соответствие единственный элемент множества.

  • - это формула, обозначающая функцию, то есть зависимость одной переменной от другой;
  • - переменная величина, или, аргумент;
  • - зависимая величина - изменяется при изменении аргумента, то есть согласно какой-либо определенной формуле, отражающей зависимость одной величины от другой.

2. Допустимые значения аргумента , или область определения функции - это то, что связано с возможными, при которых функция имеет смысл.

3. Область значений функции - это то, какие значения принимает, при допустимых значениях.

4. Существует 4 способа задания функции:

  • аналитический (с помощью формул);
  • табличный;
  • графический
  • словесное описание.

5. Основные виды функций:

  • : , где, - действительные числа;
  • : , где;
  • : , где.


Поделитесь с друзьями или сохраните для себя:

Загрузка...