Что такое тефлон? Свойства, особенности и применение тефлона. Тефлоновое покрытие

PTFE или политетрафторэтилен (англ. Polytetrafluoroethylene) больше известен под своим коммерческим названием тефлон, которое на самом деле обозначает просто одну из патентованных технологий производства этого материала (от производителя DuPont, а вообще разновидностей PTFE очень много), поэтому здесь мы будем называть этот материал исключительно политетрафторэтилен или PTFE (российская аббревиатура ПТФЭ используется реже, но также возможна). Химически ПТФЭ - фторированный высоко молекулярный полимер синтетического типа с множеством сополимеров. В основе молекулы фторуглеродные связи, а главным достоинством данного материала можно без сомнения считать его отличные водоотталкивающие свойства, благодаря чему он отлично подойдёт там, где нужно обеспечить защиту от проникновения каких-либо жидкостей вглубь материала. Это свойство оценили и передовые производители ТПА, и теперь из политетрафторэтилена изготавливаются уплотнительные элементы регулирующей и запорной арматуры, а благодаря высокой износоустойчивости материала увеличивается и срок службы трубопроводной арматуры с использованием PTFE.


За счёт этих качеств политетрафторэтилен используется для создания трубопроводов уже практически повсеместно, но и интересно и то, что трубы из PTFE изготавливают очень мало, поскольку этот материал, как известно, очень дорогой. Тем не менее использование ПТФЭ в качестве герметизирующего материала (например, для создания герметизирующих колец арматуры) полностью оправдывает себя, поскольку именно PTFE имеет минимальный коэффициент шероховатости среди всех полимерных материалов. Что же касается применения политетрафторэтилена для изготовления различных бытовых изделий (особенно известны сковороды с антипригарным тефлоновым покрытием), то оно возможно за счёт того, что материал обладает пониженной химической активностью, то есть не вступает в реакции практически ни с какими средами, в том числе и достаточно агрессивными. А ещё ПТФЭ нетоксичен, что и позволяет использовать его в тех областях, где требуются довольно высокие экологические характеристики материалов.

Возвращаясь к трубам из политетрафторэтилена, стоит заметить, что такие трубы всё же есть, но распространены они лишь на некоторых предприятиях химического сектора и связанных с ним (например, фармацевтической отрасли и отчасти пищевой). И здесь дорогие трубы полностью оправдывают себя, поскольку PTFE, как известно, обладает исключительной химической стойкостью и способен выдерживать даже агрессивные среды при высокой температуре, не вступая с ними в реакцию. Таким образом, идеальное применение трубам из PTFE напрашивалось само собой - это транспортировка химически агрессивных сред при повышенных температурах. Подробно на списке соединений останавливаться не будем, поскольку это тема специальной статьи. Скажем лишь, что трубы из политетрафторэтилена позволяют транспортировать большинство агрессивных соединений в достаточно широком диапазоне температур - в частности от –50 С до +100 градусов по Цельсию. Допускается транспортировка агрессивных сред и в более широком диапазоне температур, но при пониженном давлении. В этом отношении свойства PTFE пересекаются с характеристиками таких материалов, как PVDF и ECTFE. А теперь поговорим о ещё одном интересном полимере, который также используется для производства полимерных труб. Это этилентетрафторэтилен или ETFE.

ETFE (англ. EthyleneTetrafluoroethylene), в отличие от PTFE, состоит не только из фторуглеродных, а из фторуглеродных и водородуглеродных звеньев. Этилентетрафторэтилен, как и политетрафторэтилен, был создан для того, чтобы совместить в одних изделиях такие качества, как повышенная химическая стойкость и значительная термоустойчивость, причём как к высоким, так и к низким температурам. И нужно сказать, это вполне удалось, поскольку материал отличается довольно высокой температурой плавления, и при этом обнаружился ряд приятных «побочных» эффектов. Так, этилентетрафторэтилен прекрасный диэлектрик и отлично противодействует даже прямому УФ-излучению. Последнее качество позволило активно использовать ETFE в строительной отрасли - из него изготавливают кровельные элементы различных зданий (например, крыши коммерческих и промышленных зданий и даже большие окна, поскольку этилентетрафторэтилен отличается ещё и достаточной прозрачностью). А ещё из него делают оптоволокно, используя всё то же качество - устойчивость материала к ультрафиолету.


Также стоит отметить, что наряду с PFTE, ETFE является одним из самых перспективных материалов для изготовления разнообразных деталей ТПА (как правило, служащих для обеспечения герметизации арматуры и способных выдерживать повышенную температуру и давление, причём одновременно), при этом он отличается даже несколько более высокой устойчивостью к механическим воздействиям и прочностными характеристиками. Но при всём том ETFE ещё и довольно эластичен и может не просто выдерживать растяжение, значительно превышающее его объёмы в растягиваемом направлении, но и делать это без малейших потерь в своих физико-механических характеристиках. А ещё этот материал прекрасно восстанавливается и ремонтируется. Что касается листового ETFE и труб из этого материала, то ремонт повреждённых поверхностей производится при помощи термической сварки, при этом отремонтированные поверхности по своим свойствам ничуть не уступают новым.

Общее название «фторопласт» для линейки фторсодержащих полимеров появилось в середине прошлого века в СССР. Термин до сих пор используется в промышленности России с номерными индексами от «Фторопласт-2» до «Фторопласт-4», но не является зарегистрированной или запатентованной торговой маркой.

Основные свойства и применение в промышленности

Схожи не только техническое название полимеров «Фторопласт», но и свойства, и основные характеристики всех его видов:

  • тугоплавкость;
  • инертность;
  • диэлектрическая проницаемость фторопласта.

В различных марках фторопластов эти характеристики количественно разнятся, что обуславливает разные возможности применения материала.

Три основных марки фторопласта:

Изготовление деталей из фторопласта производят одним из четырех способов:

  • холодная прессовка с дальнейшим запеканием изделия из фторопласта и финишной механической обработкой;
  • экструзия;
  • напыление;
  • оплавка.

Применение «двойки» в промышленности вытекает из нескольких параметров, по которым этот вид фторопласта превосходит другие:

  • высокая твердость, прочность и жесткость (при температурах до 120 оС);
  • стойкость к воде, растворителям, излучениям любого вида;
  • биологическая инертность - не вступает в реакции с продуктами питания и живым органическим материалом;
  • практически не горюч;
  • химически чистый материал (отсутствуют примеси, появляющиеся при производстве фторполимеров).

Для фторопласта-2 температура эксплуатации to = 150 оС; температура плавления фторопласта-2 = 170 оС.

Считается универсальным материалом, применяется во всех сферах деятельности, при условии ограничения нагрева.

Процесс создания ПВДФ

В результате лабораторных исследований, разработали несколько технологических процессов для получения фторопласта-2. По критериям рентабельности и выхода готового продукта, в промышленности используются три цепочки, отличающиеся инициаторами и балансом «стоимость/качество»

Свойства кристаллических фаз ПВДФ

Фторопласт-2 обладает четырьмя разновидностями кристаллической фазы, способными переходить из одной в другую под внешними воздействиями:

  • α-фаза. Образуется из расплава без использования давления или из других разновидностей при отжиге.
  • β-фаза. Образуется из расплава под давлением 350 Мпа. Представляет особый интерес, так как в этой фазе материал демонстрирует пьезо- и пироэффекты.
  • γ-фаза. Образуется из перегретого расплава. Нестойкая. При механическом воздействии (деформации образца) переходит в β-фазу.
  • δ-фаза. Образуется из α-фазы при воздействии электрического поля. Отжигая образец в δ-фазе, при соблюдении определенных условий, можно получить любую из трех других разновидностей.

Производители и применение

В настоящее время фторопласт-2 в России не производится. Ведущие зарубежные поставщики: Agru (Австрия), FIP Spa (Италия), Georg Fisсher (Швейцария), Simona (Германия), Glynwed Pipe SYSTEMS LTD.

Трубы и узлы трубопроводов (краны, фитинги) для перекачки агрессивных сред или для производства особо чистых материалов – это то, что делают из фторопласта-2.

Листовой Ф-2 используется для футеровки емкостей и стен помещений.

Импортируют в Россию готовые изделия из фторопласта-2, а также прутки или листы.

Действующие санкции Запада в последнее время снизили возможности закупки.

Фторопласт-3 (Ф-3, Ф-3Б, PCTFE)

Обладает двойственными характеристиками - при температуре до 50 оС представляет собой аморфную массу, при нагреве кристаллизуется и превращается в полимерный кристалл с иными, чем у аморфной фазы, физическими и химическими свойствами, зависящими от процентного соотношения кристалла и аморфного вещества. При дальнейшем нагреве до 200 оС кристалл расплавляется, при 300 оС – расплав обугливается и разлагается.

Рабочий диапазон температур от -200 до +125 оС. Материал инертен ко всем растворителям и химическим средам, но неустойчив к радиации и обладает относительно невысокими электроизоляционными свойствами.

Перечисленные особенности определили применение фторопласта-3 в узлах, работающих в агрессивной среде, но с невысокой физической нагрузкой.

Пленки из политрифторхлорэтилена используют для защиты поверхностей рабочих механизмов от контакта с обрабатываемой продукцией в пищевой промышленности, в фармацевтике, в медицине. Скользящие свойства позволяют применять такие узлы без дополнительной смазки.

Процесс создания PCTFE

Радиационный метод. Технологически сложен, требует соблюдения температурного режима. Достоинство – проводится при комнатной температуре.

Суспензионный метод. Простой, экономически выгодный, но продукт получается среднего качества.

Эмульсионный метод. Дороже, чем суспензионный, но качество полимера выше.

В популярной литературе технология промышленного получения PCTFE описана скудно.

Свойства PCTFE

Основное применение полимер получил в кристаллической фазе, прошедшей процесс закалки.

Закаленный полимер прозрачен, может использоваться в качестве смотровых окон для емкостей с агрессивными средами. При нагреве до 200 оС закаленный фторопласт-3 теряет закалку, кристаллизуется и мутнеет. Недостаток в том, что низкая теплопроводность фторопласта позволяет закалять детали не толще 3-4 мм.

Достоинство – поглощение паров воды и диффузия любых других газов через PCTFE равна нулю.

Тип Ф-3Б отличается от Ф-3 лучшей прозрачностью в световом и инфракрасном диапазонах.

Производство PCTFE

В России фторопласт-3 выпускается отечественными заводами, в соответствии с ГОСТ-13744 от 1987 года. На рынке представлен в виде порошков:

  • марка «А» - для композиций;
  • марка «Б» - универсальная;
  • марка «В» - для выпрессовки изделий из композиций.

На основе марки «Б» выпускают суспензии на спирту (вид «С»), которые бывают нестабилизированными (вид «СК») и стабилизированными (вид «СВ»).

Фторопласт-4 (PTFE)

Фторопласт-4, или PTFE-материал, – самый универсальный продукт, представленный в линейке. Важность материала для промышленности и широкое применение полимера привели к принятию в 1980 году отдельного ГОСТ 10007-80 «Фторопласт-4. Технические условия (с Изменениями N 1, 2)».

Работает в широком температурном диапазоне, сохраняя свои свойства. Не смачивается ни водой, ни растворителями, ни жирами. Обладает низкими коэффициентами трения и прилипания (адгезии). Химическая стойкость политетрафторэтилена превосходит химическую стойкость золота.

Этот вид фторопласта выдерживает температуру от -200 до +270 оС. Температура плавления фторопласта-4 – 320 оС.

Ограничение в использовании - относительная мягкость полимера, поэтому его применяют в узлах с минимальной физической нагрузкой.

Высокая термостойкость фторопласта-4 используется в высокотемпературных трубопроводах, из него делают изоляцию высоковольтных проводов, технические ткани и фильтры различного назначения. Прокладки из Ф-4 с наполнителями устанавливают в подшипниках, предназначенных для работы в агрессивных средах, или без возможности смазки.

В быту он известен сантехникам и газовикам как ФУМ-лента, а домохозяйки используют сковородки с антипригарным покрытием из фторопласта-4, называемого в этом случае «Тефлон».

Тефлон

Это запатентованное название фторопласта-4, и свойства тефлона – то же самое, что и свойства марки полимера Ф-4. Высокая твердость материала и его инертность обусловили применение сырья в кухонной посуде.

Массовое распространение в быту предъявляет тефлону высокие гигиенические свойства. Исследования на животных для выяснения, чем вреден тефлон, выявили агрессивный компонент и доказали, что материал безопасен при обычной эксплуатации изделий с антипригарным покрытием. Разговоры о том, что тефлон вреден для здоровья, возникли из-за нарушения условий использования. Действительно, при перегреве посуды, например, если оставить сковородку на огне без присмотра, изделие нагревается до опасных значений температуры, и тефлоновое покрытие разрушается, выделяя ядовитые компоненты. Особенно ядовиты эти испарения для птиц, которые гибнут почти мгновенно.

Основным конкурентом для посуды с тефлоновым покрытием является керамическая посуда. По большинству сравниваемых параметров керамика лучше, чем тефлон. Кроме одного, но важного - ее цена гораздо выше.

Процесс создания PTFE

В России при производстве фторопласта-4 используют двухступенчатую технологию. На первом этапе в базовом веществе замещают атомы хлора на атомы фтора, на втором – производят термообработку и на финальном – полимеризуют готовый продукт.

Технические характеристики PTFE

Параметры вязкости фторопласта-4 исключают горячую штамповку изделий. Будущую деталь формируют холодным способом, а затем запекают.

У полимера «фторопласт-4» технические характеристики начинаются с эпитета «исключительный»:

  • исключительные диэлектрические свойства;
  • исключительная стойкость к вольтовой дуге;
  • исключительно низкий тангенс угла диэлектрических потерь в широком диапазоне частот;
  • высокая химическая стойкость;
  • абсолютная стойкость в тропических условиях и в соляном тумане;
  • исключительно низкий коэффициент трения.

Плотность фторопласта PTFE зависит от процента кристаллизации и колеблется от 2,12 до 2,28 г/см 3 .

Еще одним внешним фактором, влияющим на плотность фторопласта, является температура. При ее повышении плотность снижается до значения 1,53 г/см 3 .

Для сравнения, в нормальных условиях плотность капролона = 1,14 г/см 3 .

К недостаткам материала PTFE относятся малая прочность, низкая прозрачность и разрушаемость при радиации.

Применение PTFE

Применяется везде, где требуются антикоррозионные свойства, инертность узлов, но при этом нет большой механической нагрузки. В медицине изготавливают оборудование и элементы протезов, в том числе искусственные сосуды, имплантаты, емкости для сбора крови.

Разновидности фторопласта-4

Ф-4А и Ф-4Т в виде порошка применяются для изготовления деталей прессованием.

Ф-4Д в виде особо тонкого порошка с усиленными свойствами химической стойкости.

В международной нотации Ф-4 называются «Тефлон». Применение тефлона, как материала для антипригарного покрытия кухонной утвари, – самое известное использование фторопласта-4 под этим названием.

Композитные фторопласты

Это полимеры, в которые при изготовлении добавили наполнитель.

Применяются различные наполнители, в зависимости от того, какие свойства базового полимера необходимо усилить. Техническими условиями предусмотрено использование в добавках угля (кокса), угольного волокна, молибдена, кобальта.

Картинка присадки

Фторопласт с коксом, или фторопласт черный, обладает уникальной износостойкостью, в 600 раз превышающей показатель базового полимера Ф-4. Композитный материал фторопласт графитонаполненный (черный) применяют в узлах с критическими условиями по трению и затрудненным доступом обслуживания.

Проблемы соединения фторопластовых деталей

Превосходные свойства фторопласта по устойчивости к агрессивным средам, низкой смачиваемости, нулевой диффузии создают проблемы при необходимости склеить детали. Предлагались способы с предварительной обработкой поверхности, промывкой, сушкой и склеиванием эпоксидными составами. Испытания показали низкую прочность такого клеевого шва, клей под нагрузкой отваливался от поверхности.

Решение, чем склеить фторопласт с фторопластом, было найдено и запатентовано в СССР в 1977 году.

Метод заключается в обработке подготовленной поверхности жидким золотом и нагреве детали до температуры, когда золото восстановится и продиффундирует в полимер на глубину 1 микрон. Позолоченную поверхность склеивают компаундом с другой деталью.

Допускается вместо золота применять платину или серебро, но платина снижает прочность шва, а серебро недостаточно стойкое к воздействию агрессивной среды.

Проблема, чем клеить фторопласт к металлу, или полимер к фторопласту, удовлетворительно не решена до сих пор. Современные технологии предлагают специальные клеи, например, ФРАМ-30, но склеиваемая поверхность должна быть предварительно протравлена жидким натрием, да и качество шва получается невысокое.

Сортамент поставки

Фторопласты, предназначенные для дальнейшей переработки, поставляются в виде прутка, листов, пленок, порошков и суспензий. На сайтах большинства дилеров встроены онлайн-калькуляторы, рассчитывающие массу заказываемого ассортимента, беря за основу удельный вес фторопласта. Приблизительно можно определить вес фторопласта листового из расчета 2200 кг/1 м 3 , то есть лист 1000 мм х 1000 мм х 10 мм будет весить 22 кг. Для сравнения, аналогичный лист капролона будет весить около 15 кг.

Вес фторопластового стержня длиной 1000 мм и диаметром 100 мм будет около 18 кг.

Сравнение фторопласта и капролона

Капролон, или полиамид-6, по характеристикам близок к фторопласту. Отличие капролона от фторопласта в механических свойствах, но однозначно ответить, что прочнее – фторопласт или капролон, невозможно. Последний немного тверже, меньше деформируется и повреждается при равных нагрузках. Но при этом его износостойкость при длительной эксплуатации ниже, чем у фторопласта.

Изготовление деталей из капролона требует более высокой точности, но технологически деталь из него методом литья сделать проще и дешевле, чем прессовкой и запеканием из фторопласта.

Почти вдвое отличаются температуры плавления капролона и фторопласта. Первый плавится при 220 оС, а для второго – это рабочая температура.

Если требуется длительная эксплуатация с небольшими механическими нагрузками – желательно установить фторопластовую деталь, если механические нагрузки значительные, то лучше капролон, чем фторопласт. При сравнении, что лучше – фторопласт и капролон, при изготовлении втулок в расчет берутся параметры технологичности и прочности.

Фторопластовые втулки делают с допуском, чуть больше по внешнему размеру и чуть меньше по внутреннему, методом запрессовывания туда вала. При ударной нагрузке на вал втулка теряет форму и подлежит замене.

Капролоновые втулки жесткие, ударную нагрузку держат отлично, форму не теряют, но быстро изнашиваются. Требуются прецизионная точность изготовления и дополнительная амортизация узла.

Замена фторопласта

Высокие характеристики затрудняют замену фторопласта другими материалами. Принять решение, чем заменить фторопласт, можно при ограничениях в эксплуатационных параметрах узла. Например, низкие рабочие температуры позволяют произвести замену фторопласта на капролон без потери надежности. На рынке недавно появился импортный материал TECAPET (полиэтилентерефталат), пришедший на замену капролону. В России он пока не производится.

Свойства

Ед. изм.

FPM/FKM
(виттон)

PTFE
(тефлон)

POM
+15%GF
+5%MoS2

темно-серый

кремовый

жесткость

жесткость

плотность

прочность на разрыв

прочность на растяжение

модуль эластичности - (разрыв)

70°С/24ч 20% Деформация

давление остаточной деформации

100°С/24ч 20% Деформация

эластичность отдачи

прочность на широкий разрыв

истирание / износ

Минимальная температура

Максимальная температура

NBR, TPU, MVQ, ...

Эластомеры - это материалы, которые посредством применения небольшой силы поддаются очень сильному растяжению. Благодаря их строению эластомеры обладают очень высокой степенью способности возвращения в исходное положение. Это означает, что остаточное изменение формы этих материалов является незначительным. В принципе эластомеры можно разделить на две группы: эластомеры химического сшивания и термопластические эластомеры. Химически сшитые эластомеры или резиновые материалы являются высокополимерами, макромолекулы которых сшиты крупными петлями с помощью добавления вулканизационного средства. Благодаря подобному химическому сшиванию они не поддаются плавлению и распадаются при высоких температурах. Более того, подобное сшивание способствует тому, что резиновые материалы являются нерастворимыми и в зависимости от среды менее или более сильно разбухают или сокращаются. Термопластические эластомеры - это материалы, которые обладают характерными свойствами эластомеров в пределах высокого температурного диапазона. Однако их сшивание происходит физическим, а не химическим путем. Благодаря этому они плавятся при высоких температурах и поддаются обработке обычными термопластическими методами. Термопластические эластомеры растворимы и обладают более низкой способностью набухания по сравнению с их химически сшитыми эквивалентами.

POM, PA, PTFE + наполнитель, PEEK, ...

Термопласты - это плавящиеся высокополимерные материалы, которые в своем температурном диапазоне применения значительно тверже и жестче по сравнению с эластомерам. В зависимости от своего химического состава свойства материала могут быть как хрупким и ломким, так и вязким и упругим. Морфологический состав обуславливает большие растяжения без возврата в исходную форму. Форма материала пластически изменяется и таким образом материал получил название пластомер. Пластомеры применяются в технике уплотнений для таких твердых уплотнительных элементов как опорные, направляющие и ведущие кольца.

TPU (зеленый) - это материал из группы термопластических полиуретанэластомеров. TPU отличается особенной износоустойчивостью, превосходными механическими свойствам, экстремально низким давлением остаточной деформации и высоким сопротивлением разрыву. В технике уплотнений TPU применяется в основном в форме губчатых колец, грязесьемников, компактных уплотнений и шевронных манжетах. Прочность на экструзию TPU намного превосходит прочность резиновых пластомеров. TPU подходит для применения в специальных областях таких как минеральные масла, вода с максимальной температурой до 40°С и в биологически разлагающихся гидравлических жидкостях при 60°С. Без опорных колец уплотнения из TPU применяются до максимального давления 400Бар, в зависимости от геометрии профиля.

TPU (красный) - это устойчивый к воздействию гидролизов термопластический полиуретан-эластомер. Он сочетает в себе примерно одинаковые механические свойства TPU и необычную для полиуретанов высокую устойчивость в среде гидролиза (с температурой воды до 90 °С) и минеральных масел. Эти свойства позволяют применение в водной гидравлике, при строительстве туннелей, в горнодобывающей промышленности и производстве прессов. Газопроницаемость TPU (красный) намного ниже по сравнению с TPU (зеленым), поэтому особенно используется в газах высокого давления.

CPU (красный) - это литой эластомер, производимый с помощью специального процесса литья из тех же сырьевых компонентов как и TPU (красный). Обладает теми же химическими и механическими свойствами как и TPU (зеленый), но используется для полуфабрикатов размерами от 550 мм до 2000 мм и специальных размеров с экстремально толстыми стенками.

TPU (голубой) - это модифицированный TPU для применения при низких температурах. TPU (голубой) в отличии от материала TPU (зеленый) переходит в состояние текучести при более низкой температуре (-42°С) и обладает более высокой эластичностью и остаточной деформацией (45%). Применяется для эксплуатации в холодных климатических условиях (- 50°С).

TPU (серый) - это совершенно новый термопластический полиуретан-эластомер, с добавками композиционных материалов, обеспечивающих постоянную смазку. Этим обеспечивается постоянное снижение трения, увеличение скорости скольжения и снижение износа. Применяется для эксплуатации в условиях плохой смазки (сухого хода), или отсутствия смазки маслом: водяная гидравлика и пневматика (без масла).

NBR (черный) - это эластомер на основе сшитого серой акрил-нитрил- бутадиен-каучука. Обладает высокой твердостью и для резиновых эластомеров высокой устойчивостью к стиранию. При высоких температурах, особенно в кислородной среде (воздух 80°С) ускоряется старение, материал становится твердым и хрупким. При перекрытии доступа воздуха процесс старения значительно замедляется. В следствии его ненасыщенной структуры NBR обладает низкой устойчивостью к озону, погодному воздействию и старению. Набухание в минеральных маслах является незначительным, однако находится в сильной зависимости от состава масла. Газопроницаемость относительно высокая, вследствие чего имеет опасность взрывной декомпрессии, при которой разрываются части материала. Применяется в тех областях, где наряду с высокой устойчивостью к горючим и минеральным маслам также требуется высокая эластичность и остаточная деформация (уплотнения цилиндра при низких давлений).

H-NBR (черный) - это гидрированный акрил-нитрил-бутадиен-каучук и обладет по сравнению с NBR лучшими механическими свойствами, высокой устойчивостью в таких химических средах как пропан, бутан, минеральные масла и жиры, с высоким процентом добавок, в растворенных кислотах и щелочах при более широком температурным диапазоне (-25°С до +150°С). Также более устойчив к озону, погоде и старению. При всем этом остается высоко эластичным. Применяется в уплотнениях моторов и коробок передач, при добыче сырой нефти и природного газа, и т.д.

FPM, FKM (коричневый) - эластомер на основе сшитого бисфенолом фторо- каучука (Витон - торговая марка Дю Понт). Предназначается для пазовых колец, грязесъемников, губчатых колец, шевронных манжет и др. Обладает высокой устойчивостью к температурам, химикатам, экстремальным погодным условиям и озону. Диапазон температур: от -20°С до + 200°С (кратковременно до 230°С). Применяется в гидравлических системах с тяжело-воспламеняющимися жидкостями группы HFD (на основе фосфора). Низкая устойчивость к аммиачным и амминным средам, полярным растворителям (ацетону, метилетилкетону, диоксану), в тормозных жидкостях на гликольной основе.

EPDM (черный) - эластомер на основе сшитого переоксидным образом этилен-пропилен-диен-каучука. Обладает хорошими механическими свойствами и широким температурным диапазоном применения: от - 50°С до + 150°С, горячий пар до 180°С. В следствии своей неполярности не устойчив в гидравлических жидкостях на основе минеральных масел и углеводов. Используется в условиях горячей воды, пара, щелочей и полярных растворителей (в моющей и чистящей технике). При использовании в тормозных жидкостях на основе глюколя требуется согласование с региональными нормативами. Устойчив к погодным воздействиям, озону и старению.

MVQ (коричневый) - это эластомер на основе метил-винил-силикон-каучука. Не наполнен сажей и пригоден для электроизоляции. Температурный диапазон от - 60°С до +200°С. Применяется для О-колец, плоских и специальных уплотнений, в пищевой и химической промышленности. Из-за низких механических значений (по сравнению с другими резиновыми материалами) используется прежде всего в статических уплотнениях. Набухание в минеральных маслах является незначительным, однако зависит от состава масла.

PTFE (белый) - это кристаллический термопласт на химической основе политеттрафтороэтилена (тефлон). Исключительно широкий температурный диапазон применения (-200°С до +200°С), самый низкий коэффициент трения (м=0,1) среди всех пластмассовых материалов и очень высокая степень устойчивости почти ко всем средам. PTFE имеет не прилипающую поверхность, не впитывает влажность и обладает очень хорошими электрическими свойствами. Важно учитывать зависящее от времени пластическое формоизменение PTFE даже при незначительной нагрузке (холодная текучесть). Устойчив почти ко всем химикатам, за исключением элементарного фтора, хлортрифторида и расплавленных щелочных металлов. Поэтому имеет наиболее широкий спектр применения в технике.

PTFE + наполнитель (серый) - отличается от PTFE по своему химическому составу добавленными наполнителями (15% стекловолокна и 5% дисульфид молибдэна), которые снижают пластическое формоизменение при нагрузках (снижение текучести в холодном состоянии, повышение устойчивости к экструзии). Применяется в уплотняющих элементах для низкого трения с высокой нагрузкой, для скользящих и опорных элементов, там где не может быть применен чистый тефлон. Из-за присутствия наполнителей невозможно применение в пищевой промышленности.

POM (черный) - технический термопласт на основе полиацетала (полиоксиметилена). Обладает высокой способностью сохранения формы, высоким поверхностным сопротивлением, упругостью и незначительным впитыванием влажности. Склонность к холодному течению при Т ниже 80°С незначительна. POM является превосходным материалом в условиях скольжения и износа и обладает отличными механическими свойствами. POM применяется там где требуется высокая твердость и низкое трение, то есть для направляющих и опорных элементов (при Т= 100°С). Недостаточно устойчив в кислотах и щелочах.

PA (черный) - термопласт на основе литого полиамида. Применяется вместо POM при диаметрах больше 250 мм. Высокая способность сохранения формы, упругости и жесткости, однако склонен к впитыванию влажности (утрата жесткости и изменение объема). Применение в водянистых средах не рекомендуется. Хорошо пригоден для скользящего функционирования (опорные, направляющие кольца).

PEEK (кремовый) - термопласт на основе полиарилетеркетона из ряда высоко температуро-устойчивых искуственных материалов. Применяется главным образом в тех областях, где из-за высоких температур (до +260°С), высоких химических и механических требований невозможно применение обычных технических пластмассовых материалов. Универсальная устойчивость во многих химических средах (за исключением серной, селитровой кислоты) обуславливает применение PEEK в областях нефтегазовой и химической промышленности. Широкое применение в электротехнике и электронике благодаря хорошим электрическим свойствам в комбинации с механическими.

Благодаря прочному фторо - углеродному соединению и надежной защите атомов углерода атомами фтора, тефлон обладает почти универсальной химической устойчивостью.

  • На свойства тефлона не влияют ни растворители типа спиртов, сложных эфиров, кетонов, ни агрессивные кислоты (концентрированная серная кислота, азотная кислота, плавиковая кислота и др.)
  • Только при помещении материала в хладагенты (фреон) наблюдается обратимое увеличение веса в пределах 4-10%.
  • Незначительная химическая реакция (окрашивание в коричневый цвет) происходит при контакте тефлона с щелочными металлами.
  • При высоких температурах и давлении тефлон вступает в реакцию с элементарными фтор- и хлор-флюоритами.

    Из вышесказанного ясно, что при использовании тефлона отпадает необходимость в многочисленных таблицах совместимости материалов.

    Устойчивость к свету и погодным условиям

    Отличается необыкновенной устойчивостью к свету и погодным условиям. Поэтому он без ограничений подходит для наружного применения при самых неблагоприятных погодных условиях, при этом все механические и электрические свойства остаются без изменений.

    Гигроскопичность

    Гигроскопичность тефлона практически равна нулю. Даже после длительного хранения в воде водопоглащения обнаружено не было (согласно DIN 53472/8.2).

    Физиологические свойства тефлона

    Тефлон без наполнителей является физиологически нейтральным материалом. Несколько опытов по имплантации материала в живые ткани не показали какой-либо несовместимости. Имеются допуски организаций FDA (Комитет пищевой и лекарственной промышленности США) и BGA (Федеральный Союз оптовой и внешней торговли Германии), согласно которым материал может применяться в медицине и пищевой промышленности. В этом отношении незаменимым качеством материала является устойчивость к горячему водному пару, благодаря чему могут подвергаться стерилизации при их применении в медицинских целях, а также в фармацевтической и пищевой промышленности.

    Антифрикционные свойства тефлона

    Очень слабые межмолекулярные силы являются причиной того, что имеет самый низкий коэффициент трения среди всех твердых материалов. При чем величины статического и динамического коэффициентов трения почти одинаковы. Движения рывками при этом не наблюдается. Антифрикционная способность сохраняется также при температуре ниже 0 °C При температуре выше 20 °C коэффициент трения незначительно возрастает. При добавлении к тефлону различных наполнителей может наблюдаться несущественное изменение коэффициента трения.

    Физические свойства тефлона в сравнении с другими фтортермопластами

    материал
    PTFE FEP PFA PCTFE PVDF
    свойства Метод испытания Ед.
    Плотность 23 °C DIN 53479 g/cm 3 2,15-2,19 2,12-2,17 2,12-2,17 2,10-2,20 1,76-1,78
    Прочность в момент разрыва 23 °C DIN 53455 N/mm 2 22-40 18-25 27-29 30-38 38-50
    Удлинение при разрыве 23 °C DIN 53455 % 250-500 250-350 300 80-200 30-40
    Твердость при вдавливании шарика 23 °C DIN 53456 N/mm 2 23-32 23-28 25-30 30 65
    Предел вдавливания 23 °C DIN 53455 N/mm 2 10 12 14 40 46
    Модуль упругости при движении 23 °C DIN 53457 N/mm 2 400-800 350-700 650 1000 - 2000 800 - 1800
    Модуль упругости при изгибе 23 °C DIN 53457 N/mm 2 600-800 660-680 650-700 1200 - 1500 1200 - 1400
    Предельное напряжение изгиба 23 °C DIN 53452 N/mm 2 18-20 15 52-63 55
    Твердость по Шору D 23 °C DIN 53505 55-72 55-60 60-65 70-80 73-85
    Температура плавления . ASTM 2116 °C 327 253-282 300-310 185-210 165-178
    Температура эксплуатации без нагрузки . . °C 260 205 260 150 150
    Коэффициент теплового расширения 10 -5 . DIN 52328 K -1 10-16 8-14 10-16 4-8 8-12
    Теплопроводность 23 °C DIN 52612 W/K · m 0,25 0,2 0,22 0,19 0,17
    Удельная теплоемкость 23 °C KJ/kg · K 1,01 1,17 1,09 0,92 1,38
    Содержание кислорода . . % >95 >95 >95 >95 >43
    Гигроскопичность . DIN 53495 % <0,01 <0,01 <0,03 <0,01 <0,03

    Коэффициенты трения тефлон / перлитный чугун при сухом ходе (p = 0,2 N/mm 2 , T = 30°C, R t ß <1,5 µm)

  • другие виды ПОМ-С, ПОМ-Г

    ПТФЭ TFM

    ПТФЭ TFM является так называемым тефлоном второй генерации, получаемым путем модификации небольшой добавкой ППВЭ, влияющей на процесс образования кристаллической фазы полимера. Значительно более короткие по сравнению со стандартным ПТФЭ цепи молекул и модифицированная кристаллическая структура позволили совместить определенные термопластические свойства этой модификации с общими хорошими механическими свойствами основной формы ПТФЭ. Модификация ППВЭ ведет к образованию кристаллитов меньшего размера, распределенных более равномерно и густо, что влияет на более однородную структуру полимера, проявляющуюся, в частности, более высокой прозрачностью ПТФЭ TFM по сравнению с основной формой. Это позволяет улучшить такие свойства термпопластов, как проводимость, текучесть и уменьшенная пористость пластмассы.

    ПТФЭ TFM отличается кроме того:

    • лучшими механическими свойствами, как например: удлинение при растяжении/разрыве, жесткость - особенно при высоких температурах
    • значительно меньшей деформацией при нагрузке и большей способностью возврата к первоначальной форме после прекращения действия нагрузки
    • меньшей ползучестью, прежде всего, в диапазоне более высоких температур и/или нагрузок
    • более высокой прозрачностью и очень гладкой поверхностью
    • возможностью сварки

    Область применения ПТФЭ TFM
    ПТФЭ TFM применяется в конструкции элементов машин и оборудования, требующих большой живучести элементов, например, в элементах работающих с небольшими перерывами или сервисных элементов в больших диапазонах времени. Применяется в устройствах, относительно которых ожидается высокая надежность действия и доступность, а также для элементов, требующих выполнения сварных соединений.

    ПТФЭ+ GF

    ПТФЭ + GF- является модификацией, содержащей добавку 15 или 25% стекловолокна

    ПТФЭ + GF отличающейся

    • высшей стойкостью к сжиманию (меньшая податливостью к ползучести)
    • большей размерной стабильностью
    • высшей стойкостью к абразивному износу (добавка GF вызывает однако более быстрый износ элемента, взаимодействующего в паре).
    • лучшей теплопроводностью
    • условной химической стойкостью в контакте с алканалами, кислотами и органическими растворителями
    • хорошими диэлектрическими свойствами

    Область применения ПТФЭ + GF
    Модификация применяется при производстве арматуры для выполнения конусообразных клапанов, опорной поверхности клапана, в электротехнике из него изготавливают электрические изоляторы, в скользящих парах используется в качестве элемента подшипников.

    ПТФЭ + C

    ПТФЭ + C - является модификацией, содержащей добавку 25% углерода.

    ПТФЭ + C отличается

    • очень высокой твердостью и стойкостью к сжимающим нагрузкам
    • хорошими скользящими свойствами и стойкостью к трущему износу, также в случае сухого трения
    • хорошей теплопроводностью
    • низкой стойкостью к электрическому пробою и низким поверхностным активным сопротивлением
    • меньшей химической стойкостью в контактах с рабочими телами с окисляющими свойствами

    ПТФЭ + CF

    ПТФЭ + CF- является модификацией, содержащей добавку 25 % углерода.

    ПТФЭ + CF отличается

    • очень небольшой ползучестью
    • хорошей стойкостью к абразивному износу, также в водной среде
    • значительно уменьшенным электрическим активным сопротивлением
    • очень хорошей химической стойкостью
    • высшей теплопроводностью и меньшими термическим удлинением (также по сравнению с модификацией со стекловолокном)

    Область применения ПТФЭ + CF
    Модификация применяется при производстве элементов машин, от которых требуется отвод электростатического заряда. В конструкции химических устройств из него изготавливают подшипники скольжения, корпуса и сиденья клапанов. Другие области применения включают: плотные направляющие поршней, работающих без смазки, различные уплотнители, скользящие и уплотнительные кольца, подвергаемые абразивному износу при сухой работе. Модификация применяется, прежде всего, для производства подшипников скольжения и других элементов, работающих с трением.

    ПТФЭ + графит

    ПТФЭ + графит - является модификацией, содержащей добавку 15% графита.

    ПТФЭ + графит отличается

    • хорошими скользящими свойствами и низким коэффициентом трения (меньше, чем в случае ПТФЭ +С)
    • лучшей теплопроводностью и электропроводностью
    • меньшей химической стойкостью в контакте с окислителями
    • относительно большим абразивным износом при работе в паре с элементами, изготовленными из металла

    Область применения ПТФЭ + графит
    Модификация применяется, прежде всего, для производства пленок скольжения, позволяющих отводить электростатические заряды.

    ПТФЭ + бронза

    ПТФЭ + бронза - является модификацией, содержащей добавку 60% бронзы.

    ПТФЭ + бронза отличается

    • хорошими свойствами скольжения и высокой стойкостью к абразивному износу - практически самый малый износ среди всех модификаций ПТФЭ
    • небольшой ползучестью
    • хорошей теплопроводностью, позволяющей понизить температуру взаимодействующих элементов и посредством этого увеличить их живучесть
    • ограниченной химической стойкостью в контактах с кислотами и водой

    Область применения PTFE + бронза :
    Модификация применяется при конструкции машин для изготовления подшипников и направляющих скольжения, подвергаемых большим механическим нагрузкам и направляющих колец в гидравлических цилиндрах.

    Подробную информацию по нестандартной модификации предоставляют специалисты Plastics Group.

    ХРАНЕНИЕ
    Лучше всего в ящиках или на паллетах, обращая внимание на плоскость складской поверхности - неровные поверхности могут вызвать необратимую деформацию (выгибание) складируемых полупродуктов.
    Храня (например, плиты) в штабелях, следует обратить внимание на поддверженность ПТФЭ к текучести - следует избегать хранения большого количества плит в одном штабеле (большой вес) и других возможных угроз, которые могут вызвать деформацию полупродуктов.



    Поделитесь с друзьями или сохраните для себя:

    Загрузка...