Дисперсия света в природе и искусстве. Дисперсия света

МОУ Алексеевская средняя общеобразовательная школа

Тема работы

«Дисперсия света, цвет и человек»

Вид работы – проблемно-реферативная

Учитель физики 1 квалификационной категории

Стекольников Всилий Георгиевич

2010 год

Введение ………………………………………………………….. 3

1. Дисперсия света ……………………………………………………4

2. Немного из истории цвета ………………………………………….5

3. Влияние цвета на человека………………………………………….7

4. Какого цвета ваш характер? ..............................................................8

5. Цвет и звук …………………………………………………………..9

6. Лечебное воздействие цвета ………………………………………..11

7. Группа крови и цвет …………………………………………………12

8. Цвет автомобиля и ДТП на дороге………………………………… 13

учебных кабинетов ………………………………………………….14

10. Заключение …………………………………………………………15

11. Список использованной литературы …………………………….. 16

Введение

В данной работе поставлены следующие задачи:

Раскрыть интересные факты о том, как цвет влияет на характер человека, какое лечебное воздействие оказывает цвет, какова связь между цветом и звуком, фантастические на первый взгляд перспективы «цветного озвучивания» космоса, какова связь между группой крови человека и цветом, о том, какая интересная зависимость существует между человеком и цветом. Немного затрагиваются малоисследованные наукой факты существования биополя человека и любого предмета, их взаимовлияние друг на друга. Также факт умелого использования великих художников и композиторов влияния цветового оформления картин и произведений для их лучшего восприятия человеком на подсознательном уровне через цвет.

Показать влияние цветового оформления учебных кабинетов, школьных коридоров, спортзалов и мастерских на успешное обучение учащихся, на их психическое состояние, а в зависимости от этого и здоровье.

1. Дисперсия света

Занимаясь усовершенствованием телескопов, Ньютон обратил внимание на то, что изображение, даваемое объективом, по краям окрашено. Он заинтересовался этим и первый «исследовал разнообразие световых лучей и проистекавшие отсюда особенности цветов, каких до того никто даже не подозревал» (слова из надписи на надгробном памятнике Ньютону). Радужную окраску изображения, даваемое линзой, наблюдали, конечно, и до него. Было замечено, также, что радужные имеют предметы, рассматриваемые через призму, Пучок световых лучей, прошедших через призму, окрашивается по краям.

https://pandia.ru/text/78/320/images/image002_36.jpg" width="124" height="112">
И. Ньютон () Опыт Ньютона Дисперсия света

Основной опыт Ньютона был гениально прост. Он догадался направить на призму световой луч малого поперечного сечения. Пучок солнечного света проходил в затемненную комнату через маленькое отверстие в стене. Падая на стеклянную призму, он преломлялся и давал на противоположной стене удлиненное изображение с радужным чередованием цветов. Следуя многовековой традиции, согласно которой радуга считалась состоящей из 7 цветов, Ньютон тоже выделил 7 цветов: фиолетовый, синий, голубой, зеленый, желтый, оранжевый, красный. Саму радужную полоску Ньютон назвал спектром.

https://pandia.ru/text/78/320/images/image005_27.jpg" align="left" width="150" height="100 src=">

Виды спектров

Важный вывод, к которому пришел Ньютон, был сформулирован им в трактате по «Оптике» следующим образом: «Световые лучи, отличающие по цвету, отличаются по степени преломляемости». Наиболее сильно преломляются фиолетовые лучи, меньше других-красные. Зависимость показателя преломления света от его цвета Ньютон назвал дисперсией .

2. Немного из истории цвета

В Англии был такой случай. На своего соседа пожаловались в суд жители домов, расположенных напротив. Дело в том, что, ядрено-канареечный цвет, в который англичанин выкрасил фасад своего дома, и черные рамы вызывали у местных жителей головную боль. По предписанию суда владелец яркого особняка вынужден был его перекрасить.

Колл" href="/text/category/koll/" rel="bookmark">коллег российские текстильные фабрики в 90-х годах, производили в основном ткани трех мрачных цветов; серого, коричневого и черного. По мнению, психологов такая цветовая гамма построена на оттенках разрушения. Полюбившимся постперестроечным россиянам сложные цвета жухлой осени, прошлогодних листьев и увядания, психологи называют грязноватистыми, тухлыми и нездоровыми.

Развитие цвета связано со 100-летним циклом, утверждает кандидат наук, один из первых российских ученых-колористов, преподаватель столичной Текстильной академии Светлана Жученкова. Концу столетия, как правило соответствуют сложные цвета; сиреневый, болотно-зеленый, серо-синий, а также бледные и нежные цвета. Простые цвета; белый, черный, красный и желтый-более характерны для начала века.

В тоже время нельзя не считаться с национальной психологией. Так, например, если в Америке мужчина идет устраиваться на работу в коричневом костюме, то он вряд ли получит это место. Французы предпочитают острые тона и любят контрасты, итальянцы - более мягкие цвета. Азия тяготеет к желтому, голубому и немного вульгарному, рыжему, прибалты - к зеленому и коричневому. Москва отличается пестрой гаммой, а Санкт-Петербург - «эстетствующей».

https://pandia.ru/text/78/320/images/image009_25.jpg" width="109" height="150">

В свое время Сталин, последовав примеру Наполеона, создавшего вычурный и помпезный цветовой стиль для увековечивания в архитектуре и живописи пышности своих побед, требовал строить порталы и арки в величественном стиле Наполеона, демонстрируя обликом страны собственное величие. С цветовой гаммой вождь народов обошелся более сурово. Из 160 цветов, каждый из которых в царской Росси имел свое название, сохранилось лишь несколько десятков. Послереволюционные цвета в истории колористики России вообще отсутствуют как жанр. В сталинскую эпоху существовали ограниченные цвета. В 40-50-ые годы страну одели в серо-стальные и зеленые тона, в 60-ые использовались цвета повышения производительности труда. В 70-ые были разработаны флюоросцентные красители. По некоторым данным, почти все разработчики этих ядовитых цветов умерли от рака.

https://pandia.ru/text/78/320/images/image011_20.jpg" align="left" width="106" height="136 src=">

3. Влияние цвета на человека.

Между человеком и цветом существуют странные и непростые отношения. По мнению ученых, цвет это не просто элемент эстетики и культуры, а скорее сложная психическая субстанция, демонстрирующая настроение человека, состояние его психического здоровья и даже способная влиять на него.

https://pandia.ru/text/78/320/images/image014_16.jpg" width="276" height="360 src=">

Красный цвет активизирует мышечную силу. Психологи утверждают, что, если на тяжелоатлета надеть красные очки, он «возьмет» больший вес, чем без них. В то же время, находясь в окружении «красного», человек постарается быстрее из него выбраться. Красные телефонные будки были рассчитаны на большую проходимость. Почти также реагируют на этот цвет и дети. Ребенок, спящий лицом к стене с красными обоями, более раздражителен и неспокоен.

Фиолетовый цвет мог бы заменить наркоманам галлюциноген. Если человека посадить в комнату, где все: потолок, пол, стены, окна и двери будут выкрашены в фиолетовый цвет, то у него начнутся галлюцинации.

Синий цвет способствует размышлениям, успокаивает и снижает давление.

Голубой цвет настраивает на меланхолию.

Белый цвет создает ощущение нереальности.

Черный цвет самый сложный с одной стороны, мистический, символизирующий посвященность во что-то недоступное остальным, с другой стороны - официальный.

Влияние на человека

Раздражает, возбуждает

Фиолетовый

Вызывает галлюцинации

Успокаивает, снижает давление

Настраивает на меланхолию

Создает ощущение нереальности

Мистический

4. Какого цвета ваш характер?

Психологи утверждают, что характер человека можно определить по его цветовым вкусам. К таким выводам, кстати, пришел швейцарский ученый М. Люмар. Он считает, что если вам нравится красный цвет, то основные ваши черты-сильная воля, быстрое принятие решений. Предпочтение желтого цвета говорит о том, что вы оптимист и идеалист. Вам нравиться все новое, неожиданное, необычное и сенсационное.

Если вам нравиться оранжевый цвет, то вы склонны легко воспринимать удачи и неудачи, у вас достаточно воли для принятия решений. Вы сильны физически и психически.

Если вам нравиться зеленый цвет, то вы самоуверенны и критически настроенная личность. Вы основательны, консервативны, знаете себе цену. Вы почти идеальны в семейной жизни.

Если вас привлекает голубой или синий цвет, то вы человек несильного характера, эмоциональны и добродушны, с богатой внутренней жизнью.

Если же вам нравиться фиолетовый цвет, то вы скорее интуитивист, чем логик.

Основные черты характера

Сильная воля, решительность

Оптимист, идеалист

Оранжевый

Вы сильная личность

Вы самоуверенны, консервативны, идеальны в семейной жизни

Слабохарактерны, эмоциональны, добродушны

Фиолетовый

Вы интуитивист, чем логик

5. Цвет и звук

Связь между цветом и звуком наиболее ярко выражена в явлении цветомузыки. Цветомузыка была близка композитору, который предпочитал создавать свои произведения в определенной для данного цвета тональности. Музыка цвета была одним из основных элементов и во многих картинах художника. Масштабного осуществления цветомузыкального воздействия впервые удалось композитору в симфонической поэме «Прометей» («Поэма огня», 1910г.) Для усиления воздействия музыки он ввел в состав оркестра орган, колокола, использовал звучание хора без слов и специальное освещение («партии цвета»).

Картины Рериха:

https://pandia.ru/text/78/320/images/image016_19.jpg" width="128" height="128">

Восприятие человеком музыкальных произведений одновременно с определенной цветовой гаммой света существенно влияет на впечатление от использования этих произведений. В первую очередь потому, что чувствительности глаза и уха взаимосвязаны. Так, чувствительность глаза к зелено-голубым лучам видимого спектра под влиянием звуков и шумов заметно повышается, а к оранжево-красным понижается; чувствительность же нашего слухового аппарата с повышением интенсивности освещения уменьшается. Влияет и то, что быстрее всего человек воспринимает предметы красного цвета и медленнее всего, предметы фиолетовой окраски. И поскольку мир в красках всегда воспринимается человеком острее и глубже, чем серый фон, автор музыки имеет возможность использовать особенности цветового зрения человека для усиления воздействия на него музыки.

Медики давно уже установили, что мажорная музыка ускоряет выделение в организме пищеварительных соков, оказывает возбуждающее действие на человеческий организм, главным образом ускоряет ритмы дыхания и сердцебиения. Его воздействие усиливается, если использовать в окраске помещений и предметов, оранжево-красные тона. Мелодичная музыка вызывает у человека замедление дыхания; на восприятии тихих, невозбуждающих у человека тревоги звуков основана музыкальная терапия. Ее эффективность повышается, если она проводится в помещении, где преобладают сине-зеленые тона окраски.

Это не случайно. В психологическом плане красные цвета возбуждают и настораживают человека-это цвет огня и крови, и в исторически сложившихся у человека представлениях они служат предвестниками беды. Сине-зеленые тона - это цвета свежей растительности и ясного неба; они обычно не связаны с опасностью. Таким образом, цвет влияет на психофизиологическое состояние человека, на восприятие им различных явлений, в том числе и музыки.

Наблюдается и обратный процесс. У большинства любящих музыку людей при сопоставлении мажорных и минорных мелодий возникает ощущение светотени, ибо мажор отождествляется со «светлым» ладом, а минор - с «темным». Это имеет место например, при восприятии картины рассвета во вступлении к опере «Хованщина» и картины ночного неба во вступлении к опере «Ночь перед Рождеством» -Корсакова.

https://pandia.ru/text/78/320/images/image019_14.jpg" width="150" height="112">

Кроме «многоцветья», сопровождающего звучание музыки, ее диапазон воздействия может расширить и использование в оркестрах музыкальных инструментов с особым звуковым спектром –как старых, но не нашедших широкого применения (например, изобретенного терменвокса), так и новых.

https://pandia.ru/text/78/320/images/image021_13.jpg" width="143" height="107">

При этом возможен такой фантастический путь: создать особый музыкальный инструмент и музыку необычайного звучания, перекодировав излучение с их богатой и оригинальной цветовой гаммой в звуковой спектр. Несмотря на кажущуюся утопичность идеи, такую работу проделали сотрудники Парижской астрономической обсерватории, которые с помощью электроакустической техники перевели в звуковые частоты свет отдельных звезд. В результате небесный свод «заговорил» с людьми на языке звуков. О восприятии «музыки небесных сфер» мечтал еще Пифагор. Ныне его мечта осуществилась, но иным путем, чем он предполагал, (не за счет механического движения небесных тел по их орбитам).

6. Лечебное воздействие цвета

Давно доказано, что каждый человек имеет свое биополе . Но как подтвердили специальные научные исследования, наличие биополя характерна и для произведений искусств; картин, скульптур. Более того, в ходе эксперимента удалось доказать, что через это биополе они могут воздействовать на наше здоровье в некоторых случаях сильнее, чем лекарства. Подбором произведения и цветовой гаммы можно нормализовать давление, успокоить нервную систему, уменьшить боль, снять стресс. При регулярном лечении художественными произведениями отмечены хорошие результаты при неврозах, болезнях сердца, печени, щитовидной железы, желчного пузыря и кишечника. Кроме этого человек получает сильный психоэмоциональный импульс, который способствует общему оздоровлению организма.

https://pandia.ru/text/78/320/images/image024_11.jpg" width="92" height="180">

Лечебное воздействие цвета связано с влиянием колебаний волны определенной длины на наши органы и психические центры, причем действие разных цветов оказывает специфическое влияние при определенных заболеваниях.

Красный цвет помогает при вирусных заболеваниях, язвах желудка, анемии , гипотонии, стимулирует иммунитет, деятельность желез внутренней секреции и обмен веществ, укрепляет память, придает бодрость и энергию.

Розовый цвет оказывает седативное воздействие на нервную систему, улучшает настроение.

Оранжевый цвет улучшает процессы пищеварения, регенерации, помогает при заболеваниях селезенки и легких, усиливает кровообращение.

Желтый цвет эффективен при атонических запорах, бессоннице , кожных заболеваниях. Он возбуждает аппетит, оказывает очищающее действие на весь организм, стимулирует зрение и работу печени, тонизирует нервную систему. Его принято считать физиологически оптимальным цветом.

Зеленый цвет нормализует сердечную деятельность, стабилизирует артериальное давление, уменьшает головные боли, боли при заболеваниях позвоночника, помогает при острых простудных заболеваниях, улучшает обмен веществ и работоспособность.

Голубой цвет используют при заболеваниях глаз, печени, гортани, позвоночника. Он снижает аппетит и спазмы кишечника, нормализует сердечную деятельность.

Синий цвет влияет на щитовидную железу, помогает при заболеваниях почек и мочевого пузыря, легких, глаз, лечит бессонницу, психические болезни, желтуху, кожные заболевания.

Фиолетовый цвет -цвет духовности и творчества. Он оказывает успокаивающее действие на нервную систему, помогает при психических расстройствах, невралгии, сотрясениях мозга. Этот цвет рекомендуют при заболеваниях почек, печени, мочевого и желчного пузыря, при различных воспалительных процессах. Отмечено также его позитивное воздействие на сосудистую систему.

7. Группа крови и цвет

Ученые установили, что между группой крови человека и цветом, также существует тесная связь.

1-ая группа крови. Наиболее благоприятны красный, оранжевый и пурпурный тона.

3-яя группа. Более широкий выбор. Красный и оранжевый цвета стимулируют процессы жизнедеятельности и усиливают умственную деятельность. Голубой и зеленый тона успокоят нервы, а фиолетовый тон будет способствовать создания настроения для раздумий и воспоминаний.

4-ая группа. Люди с такой группой крови сходны по своим энергетическим характеристикам со второй, следует чаще соприкасаться чаще с голубым и зеленым цветом.

Группа крови

Благоприятный цвет

Красный, оранжевый, пурпурный

Голубой, зеленый

Красный, оранжевый, голубой, зеленый, фиолетовый

Голубой, зеленый

8. Цвет автомобиля и ДТП на дороге

По официальным данным, автомобили серебристого цвета на 50% реже попадают в серьезные ДТП, чем автомобили других цветов. Автомобили белого, желтого, серого, красного и синего цвета имеют примерно одинаковый уровень риска. Особенной опасности подвергаются те водители, которые садятся за руль черных, коричневых и зеленых автомобилей, потому что их риск попасть в аварию и получить серьезные травмы повышаются в 2 раза.

https://pandia.ru/text/78/320/images/image026_10.jpg" align="left" width="335" height="209 src=">Самый «опасный» автомобиль по вероятности попадания в ДТП.

Риск увеличивается в 2 раза.

Цветопсихологические исследования показали, что дети отдают предпочтение тому или иному цвету в зависимости от возраста.

В раннем возрасте они предпочитают красный или пурпурный цвет, причем девочки розовый цвет.

В возрасте 9-11 лет интерес к красному цвету постепенно заменяется интересом к оранжевому, затем к желтому, желто-зеленому, а затем к зеленому.

После 12 лет любимый цвет синий.

Классные доски необходимо окрашивать в темно-зеленый или в темно-синий цвет. Не следует на стене, где висит доска, создавать цветовой контраст, чтобы не утомлять зрение учащихся. Передняя стена во многих случаях может быть окрашена в цвет, более интенсивный по сравнению с задней и боковыми стенами.

В подготовительном и первом классе можно рекомендовать интенсивные чистые красные тона.

Для второклассников красный цвет можно постепенно заменять оранжево-красным или оранжевым, для 10-11 летних детей - желтым, желто-зеленым, а затем зеленым.

Для детей переходного возраста начинает играть определенную роль синий цвет, но обязательно в сочетании с оранжевым, так как класс с большим количеством синевого цвета создает «холодное» впечатление.

В классах, где занимаются ручным трудом, следует применять голубой цвет. Этим же цветом следует окрашивать музыкальный класс. В спортивном зале лучше применять голубой и светло-зеленые цвета.

Залы и коридоры могут быть окрашены в светло-синий и желтый цвета

Предпочитаемые цвета

Цвет, вызывающий отрицательное отношение

Преобладающее психологическое настроение

Красный, пурпурный, розовый, бирюзовый

Черный, темно-коричневый, серый

Пребывание в мире сказок

Зеленый, желтый, красный

Оливковый, пастельно-зеленый, лиловый

Преобладание чувственного восприятия мира

Ультрамарин, оранжевый, зеленый

Фиолетовый, лиловый

Рациональный подход к восприятию мира, развитие самосознания

Красно-оранжевый

Пурпурный, розовый

Инстинктивно-целенаправленное восприятие мира

10. Заключение

Данная работа призвана показать, какое большое значение имеет знания о влиянии цвета на человеческий организм, на здоровье, на психическое и физическое состояние, на эффективное восприятие художественных и музыкальных произведений. Да и жизнь и безопасность человека напрямую связана, например, с цветом автомобиля, что конечно необходимо учитывать. Вместе с тем, это направление в физике является малоизученной, например, биополе человека и предметов. Или «малоосвещенной» в научной и учебной литературе . Это направление в физике имеет большие перспективы для дальнейшего изучения.

12. Список использованной литературы

1. , Справочник по физике, 2005 год

1.Соросовский научно-образовательный журнал, 2005 год, 2006 год

2. Журнал «Физика в школе», 2005 год

Иногда, когда после сильного ливня вновь проглядывает солнце, можно увидеть радугу. Это происходит потому, что воздух насыщен мельчайшей водяной пылью. Каждая капля воды в воздухе выполняет роль крохотной призмы, дробящей свет на разные цвета.

Около 300 лет назад И.Ньютон пропустил солнечные лучи через призму. Он открыл, что белый свет – это «чудесная смесь цветов».

Это интересно… Почему в спектре белого света выделяют только 7 цветов?

Так, например, Аристотель указывал всего три цвета радуги: красный, зеленый, фиолетовый. Ньютон вначале выделил в радуге пять цветов, а позднее – десять. Однако, впоследствии, он остановился на семи цветах. Выбор объясняется, скорее всего, тем, что число семь считалось «магическим» (семь чудес света, семь недель и т.д.).

Дисперсия света впервые была экспериментально обнаружена Ньютоном в 1666 г., при пропускании узкого пучка солнечного света через стеклянную призму. В полученном им спектре белого света он выделил семь цветов: Из этого опыта Ньютон сделал вывод, что «световые пучки, отличающиеся по цвету, отличаются по степени преломления». Наиболее сильно преломляются фиолетовые лучи, меньше всех – красные.

Белый свет является сложным светом, состоящим из волн различной длины (частоты). Каждой цветности соответствует своя длина и частота волны: красного, оранжевого, зеленого, голубого, синего, фиолетового – такое разложение света называется спектром.

Волны различной цветности по-разному преломляются в призме: меньше красного, больше – фиолетового. Призма отклоняет волны разной цветности на разные углы . Такое их поведение объясняется тем, что при переходе световых волн из воздуха в стеклянную призму скорость волн «красного цвета» изменяется меньше, чем «фиолетового цвета». Таким образом, чем меньше длина волны (больше частота), тем показатель преломления среды для таких волн больше.

Дисперсией называется зависимость показателя преломления света от частоты колебаний (или длины волны).

Для волн различной цветности показатели преломления данного вещества различны; вследствие этого при отклонении призмой белый свет разлагается в спектр .

При переходе монохроматической световой волны из воздуха в вещество длина световой волны уменьшается, частота колебаний остается неизменной . Неизменным остается цвет.

При наложении всех цветов спектра образуется белый свет.

Почему же мы видим предметы окрашенными? Краска не создает цвета , она избирательно поглощает или отражает свет.

Опорный конспект:

Вопросы для самоконтроля по теме «Дисперсия света»

  1. Что называют дисперсией света?
  2. Нарисуйте схемы получения спектра белого света с помощью стеклянной призмы.
  3. Почему белый свет, проходя через призму, дает спектр?
  4. Сравните показатели преломления для красного и фиолетового света.
  5. Какой свет распространяется в призме с большей скоростью – красный или фиолетовый?
  6. Как объяснить многообразие цветов в природе с точки зрения волновой оптики?
  7. Какого цвета будут видны через красный светофильтр окружающие предметы? Почему?

Пучок света, проходя через треугольную призму, отклоняется к грани, лежащей напротив преломляющегося угла призмы. Однако если это будет пучок именно белого света, то он, после того как пройдет через призму, не только отклонится, но и разложится на цветные пучки. Такое явление называется дисперсия света. Оно было впервые изучено в в серии замечательных опытов.

Источником света в опытах Ньютона служило небольшое круглое отверстие, расположенное в ставне окна, освещаемого лучами Солнца. Когда перед отверстием устанавливалась призма, то на стене вместо круглого пятна появлялась окрашенная полоска, названная Ньютоном спектром. Такой спектор состоит из семи главных цветов: красного, оранжевого, желтого, зеленого, голубого, синего и фиолетового, которые постепенно переходили один в другой. Каждый из них занимает в спектре пространство различного размера. Наибольшую длину имеет фиолетовая полоса, наименьшую - красная.

Следующий опыт состоял в том, что из широкого пучка цветных лучей, полученных с помощью призмы, экраном с небольшим отверстием выделились узкие пучки определенной цветности и направлялись на вторую призму.

Призма отклоняя их, не изменяет цвета этих лучей. Такие лучи называются простые или монохроматическими (одноцветными).

Опыт показывает, что красные лучи ощущают меньшее отклонение по сравнению с фиолетовыми, т.е. лучи различной цветности неодинаково преломляются призмой.

Собирая пучки лучей, вышедшие из призмы, Ньютон получил на белом экране вместо окрашенной полосы белое изображение отверстия.

Из всех проведенных опытов Ньютон сделал такие выводы:

  • белый свет по своей природе является сложным светом, который состоит из цветных лучей;
  • у лучей света различной цветности различны и показатели преломления вещества; в результате этого, когда пучок белого света отклоняется призмой, он разлагается в спектр;
  • если соединенить цветные лучи спектра, то вновь получится белый свет.

Таким образом, дисперсия света - это явление, которое обусловлено зависимостью вещества от длины волны (или частоты).

Дисперсия света отмечается не только, когда свет проходит через призму, но и в различных других случаях преломления света. Так, в частности, преломление в каплях воды солнечного света сопровождается его разложением на разноцветные лучи, этим поясняется образование радуги.

Ньютон для получения спектра направлял на призму довольно широкий цилиндрический пучок солнечного света через круглое отверстие, сделанное в ставне.

Полученный таким способом спектр представляет собой ряд разноцветных изображений круглого отверстия, частично налагающихся друг на друга. Для получения более чистого спектра, при изучении такого явления как дисперсия света, Ньютон предложил пользоваться не круглым отверстием, а узкой щелью, параллельной преломляющему ребру призмы. При помощи линзы на экране получают четкое изображение щели, после чего за линзой устанавливается призма, которая дает спектр.

Наиболее чистые и яркие спектры получают при помощи специальных приборов - спектроскопов и спектрографов.

Поглощение света - это явление, при котором энергия световой волны уменьшается при еѐ прохождении через вещество. Это происходит вследствие превращения энергии волны света в энергию вторичного излучения или, другими словами, вещества, которое имеет другой спектральный состав и другие направления распространения.

Поглощение света сможет вызывать нагревание вещества, ионизацию или возбуждение молекул либо атомов, фотохимические реакции, а также другие процессы в веществе.

Одним из результатов взаимодействия света с веществом является его дисперсия.

Дисперсией света называется зависимость показателя преломления n вещества от частоты ν (длины волн λ) света или зависимость фазовой скорости световых волн от их частоты .

Дисперсия света представляется в виде зависимости:

Следствием дисперсии является разложение в спектр пучка белого света при прохождении его через призму (рис. 10.1). Первые экспериментальные наблюдения дисперсии света проводил в 1672 г. И. Ньютон. Он объяснил это явление различием масс корпускул.

Рассмотрим дисперсию света в призме. Пусть монохроматический пучок света падает на призму с преломляющим углом А и показателем преломления n (рис. 10.2) под углом .

Рис. 10.1 Рис. 10.2

После двукратного преломления (на левой и правой гранях призмы) луч оказывается преломлен от первоначального направления на угол φ. Из рис. следует, что

Предположим, что углы А и малы, тогда углы , , будут также малы и вместо синусов этих углов можно воспользоваться их значениями. Поэтому , , а т.к. , то или .

Отсюда следует, что

, (10.1.1)

т.е. угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы .

Из выражения (10.1.1) вытекает, что угол отклонения лучей призмой зависит от показателя преломления n , а n – функция длины волны, поэтому лучи разных длин волн после прохождения призмы отклоняются на разные углы . Пучок белого света за призмой разлагается в спектр, который называется дисперсионным или призматическим , что и наблюдал Ньютон. Таким образом, с помощью призмы, так же как с помощью дифракционной решетки, разлагая свет в спектр, можно определить его спектральный состав.

Рассмотрим различия в дифракционном и призматическом спектрах.

· Дифракционная решетка разлагает свет непосредственно по длинам волн , поэтому по измеренным углам (по направлениям соответствующих максимумов) можно вычислить длину волны (частоты). Разложение света в спектр в призме происходит по значениям показателя преломления, поэтому для определения частоты или длины волны света надо знать зависимость или .

· Составные цвета в дифракционном и призматическом спектрах располагаются различно . Мы знаем, что синус угла в дифракционной решетке пропорционален длине волны . Следовательно, красные лучи, имеющие большую длину волны, чем фиолетовые, отклоняются дифракционной решеткой сильнее . Призма же разлагает лучи света в спектре по значениям показателя преломления, который для всех прозрачных веществ с увеличением длины волны (т.е. с уменьшением частоты) уменьшается (рис. 10.3).

Поэтому, красные лучи отклоняются призмой слабее, в отличие от дифракционной решетки.

Величина (или ), называемая дисперсией вещества , показывает, как быстро меняется показатель преломления с длиной волны .

Из рис. 10.3 следует, что показатель преломления для прозрачных веществ с увеличением длины волны увеличивается, следовательно величина по модулю также увеличивается с уменьшением λ.Такая дисперсия называется нормальной . Вблизи линий и полос поглощения, ход кривой дисперсии будет иным, а именно n уменьшается с уменьшением λ. Такой ход зависимости n от λ называется аномальной дисперсией . Рассмотрим подробнее эти виды дисперсии.

Дисперсия света - это зависимость показателя преломления n вещества от длины волны света (в вакууме)

или, что то же самое, зависимость фазовой скорости световых волн от частоты:

Дисперсией вещества называется производная от n по

Дисперсия - зависимость показателя преломления вещества от частоты волны – особенно ярко и красиво проявляет себя совместно с эффектом двойного лучепреломления (см. Видео 6.6 в предыдущем параграфе), наблюдаемом при прохождении света через анизотропные вещества. Дело в том, что показатели преломления обыкновенной и необыкновенной волн различно зависят от частоты волны. В результате цвет (частота) света прошедшего через анизотропное вещество помещенное между двумя поляризаторами зависит как от толщины слоя этого вещества, так и от угла между плоскостями пропускания поляризаторов.

Для всех прозрачных бесцветных веществ в видимой части спектра с уменьшением длины волны показатель преломления увеличивается, то есть дисперсия вещества отрицательна: . (рис. 6.7, области 1-2, 3-4)

Если вещество поглощает свет в каком-то диапазоне длин волн (частот), то в области поглощения дисперсия

оказывается положительной и называется аномальной (рис. 6.7, область 2–3).

Рис. 6.7. Зависимость квадрата показателя преломления (сплошная кривая) и коэффициента поглощения света веществом
(штриховая кривая) от длины волны
l вблизи одной из полос поглощения ()

Изучением нормальной дисперсии занимался ещё Ньютон. Разложение белого света в спектр при прохождении сквозь призму является следствием дисперсии света. При прохождении пучка белого света через стеклянную призму на экране возникает разноцветный спектр (рис. 6.8).


Рис. 6.8. Прохождение белого света через призму: вследствие различия значений показателя преломления стекла для разных
длин волн пучок разлагается на монохроматические составляющие - на экране возникает спектр

Наибольшую длину волны и наименьший показатель преломления имеет красный свет, поэтому красные лучи отклоняются призмой меньше других. Рядом с ними будут лучи оранжевого, потом желтого, зеленого, голубого, синего и, наконец, фиолетового света. Произошло разложение падающего на призму сложного белого света на монохроматические составляющие (спектр).

Ярким примером дисперсии является радуга. Радуга наблюдается, если солнце находится за спиной наблюдателя. Красные и фиолетовые лучи преломляются сферическими капельками воды и отражаются от их внутренней поверхности. Красные лучи преломляются меньше и попадают в глаз наблюдателя от капелек, находящихся на большей высоте. Поэтому верхняя полоса радуги всегда оказывается красной (рис. 26.8).


Рис. 6.9. Возникновение радуги

Используя законы отражения и преломления света, можно рассчитать ход световых лучей при полном отражении и дисперсии в дождевых каплях. Оказывается, что лучи рассеиваются с наибольшей интенсивностью в направлении, образующем угол около 42° с направлением солнечных лучей (рис. 6.10).


Рис. 6.10. Расположение радуги

Геометрическое место таких точек представляет собой окружность с центром в точке 0. Часть ее скрыта от наблюдателя Р под горизонтом, дуга над горизонтом и есть видимая радуга. Возможно также двойное отражение лучей в дождевых каплях, приводящее к радуге второго порядка, яркость которой, естественно, меньше яркости основной радуги. Для нее теория дает угол 51 °, то есть радуга второго порядка лежит вне основной. В ней порядок цветов заменен на обратный: внешняя дуга окрашена в фиолетовый цвет, а нижняя - в красный. Радуги третьего и высших порядков наблюдаются редко.

Элементарная теория дисперсии. Зависимость показателя преломления вещества от длины электромагнитной волны (частоты) объясняется на основе теории вынужденных колебаний. Строго говоря, движение электронов в атоме (молекуле) подчиняется законам квантовой механики. Однако для качественного понимания оптических явлений можно ограничиться представлением об электронах, связанных в атоме (молекуле) упругой силой. При отклонении от равновесного положения такие электроны начинают колебаться, постепенно теряя энергию на излучение электромагнитных волн или передавая свою энергию узлам решетки и нагревая вещество. В результате этого колебания будут затухающими.

При прохождении через вещество электромагнитная волна воздействует на каждый электрон с силой Лоренца:

где v - скорость колеблющегося электрона. В электромагнитной волне отношение напряженностей магнитного и электрического полей равно

Поэтому нетрудно оценить отношение электрической и магнитной сил, действующих на электрон:

Электроны в веществе движутся со скоростями, много меньшими скорости света в вакууме:

где - амплитуда напряженности электрического поля в световой волне, - фаза волны, определяемая положением рассматриваемого электрона. Для упрощения вычислений пренебрежем затуханием и запишем уравнение движения электрона в виде

где, - собственная частота колебаний электрона в атоме. Решение такого дифференциального неоднородного уравнения мы уже рассматривали ранее и получили

Следовательно, смещение электрона из положения равновесия пропорционально напряженности электрического поля. Смещениями ядер из положения равновесия можно пренебречь, так как массы ядер весьма велики по сравнению с массой электрона.

Атом со смещенным электроном приобретает дипольный момент

(для простоты положим пока, что в атоме имеется только один «оптический» электрон, смещение которого вносит определяющий вклад в поляризацию). Если в единице объема содержится N атомов, то поляризованность среды (дипольный момент единицы объема) можно записать в виде

В реальных средах возможны разные типы колебаний зарядов (групп электронов или ионов), вносящих вклад в поляризацию. Эти типы колебаний могут иметь разные величины заряда е i и массы т i , а также различные собственные частоты (мы будем обозначать их индексом k), при этом число атомов в единице объема с данным типом колебаний N k пропорционально концентрации атомов N:

Безразмерный коэффициент пропорциональности f k характеризует эффективный вклад каждого типа колебаний в общую величину поляризации среды:

С другой стороны, как известно,

где - диэлектрическая восприимчивость вещества, которая связана с диэлектрической проницаемостью e соотношением

В результате получаем выражение для квадрата показателя преломления вещества:

Вблизи каждой из собственных частот функция , определяемая формулой (6.24), терпит разрыв. Такое поведение показателя преломления обусловлено тем, что мы пренебрегли затуханием. Аналогично, как мы видели ранее, пренебрежение затуханием приводит к бесконечному росту амплитуды вынужденных колебаний при резонансе. Учет затухания избавляет нас от бесконечностей, и функция имеет вид, изображенный на рис. 6.11.

Рис. 6.11. Зависимость диэлектрической проницаемости среды от частоты электромагнитной волны

Учитывая связь частоты с длиной электромагнитной волны в вакууме

можно получить зависимость показателя преломления вещества п от длины волны в области нормальной дисперсии (участки 1–2 и 3–4 на рис. 6.7):

Длины волн, соответствующие собственным частотам колебаний , - постоянные коэффициенты.

В области аномальной дисперсии () частота внешнего электро­маг­нитного поля близка к одной из собственных частот колебаний молекулярных диполей, то есть возникает резонанс. Именно в этих областях (например, участок 2–3 на рис. 6.7) наблюдается существенное поглощение электромагнитных волн; коэффициент поглощения света веществом показан штриховой линией на рис. 6.7.

Понятие о групповой скорости. С явлением дисперсии тесно связано понятие о групповой скорости. При распространении в среде с дисперсией реальных электромагнитных импульсов, например известных нам цугов волн, испускаемых отдельными атомными излучателями, происходит их «расплывание» - расширение протяженности в пространстве и длительности во времени. Это связано с тем, что такие импульсы представляют собой не монохроматическую синусоидальную волну, а так называемый волновой пакет, или группу волн - совокупность гармонических составляющих с разными частотами и с разными амплитудами, каждая из которых распространяется в среде со своей фазовой скоростью (6.13).

Если бы волновой пакет распространялся в вакууме, то его форма и пространственно-временная протяженность оставались бы неизменными, а скоростью распространения такого цуга волн была бы фазовая скорость света в вакууме

Из-за наличия дисперсии зависимость частоты электромагнитной волны от волнового числа k становится нелинейной, и скорость распространения цуга волн в среде, то есть скорость переноса энергии, определяется производной

где - волновое число для «центральной» волны в цуге (обладающей наибольшей амплитудой).

Мы не будем выводить эту формулу в общем виде, но на частном примере поясним ее физический смысл. В качестве модели волнового пакета примем сигнал, состоящий из двух плоских волн, распространяющихся в одном направлении с одинаковыми амплитудами и начальными фазами , но различающихся частотами, сдвинутыми относительно «центральной» частоты на небольшую величину . Соответствующие волновые числа сдвинуты относительно «центрального» волнового числа на небольшую величину . Эти волны описываются выражениями.



Поделитесь с друзьями или сохраните для себя:

Загрузка...