Электромагнитное оружие. Перспективы применения в информационной борьбе

Используется непосредственно для поражения цели.

В первом случае магнитное поле используется как альтернатива взрывчатым веществам в огнестрельном оружии . Во втором - используется возможность наведения токов высокого напряжения и выведения из строя электрического и электронного оборудования в результате возникающего перенапряжения , либо вызывание болевых эффектов или иных эффектов у человека. Оружие второго типа позиционируется как безопасное для людей и служащее для вывода из строя техники противника или приводящих к небоеспособности живой силы противника; относится к категории оружия нелетального действия .

Французская кораблестроительная компания «DCNS» разрабатывает программу «Advansea » в ходе которой планируется создать к 2025 году полностью электрифицированный боевой надводный корабль с лазерным и электромагнитным вооружением.

Классификация

Электромагнитное оружие классифицируется по следующим признакам:

  • использование снаряда или непосредственное использование энергии для поражения цели для второго вида
  • летальность воздействия на человека
  • ориентация на поражение живой силы или техники

Поражающие цель излучением

  • Микроволновая пушка
  • Электромагнитная бомба использующая в боевой части УВИ , ВМГЧ, или ПГЧ.

См. также

  • Электромагнитный ускоритель

Ссылки

  • Испытана сверхмощная электромагнитная пушка, cnews.ru, 01.02.08

Wikimedia Foundation . 2010 .

Смотреть что такое "Электромагнитное оружие" в других словарях:

    - (микроволновое оружие), мощный электронный импульс, накрывающий площадь в радиусе 50 км от центра применения. Проникает внутрь строений через швы и трещины в отделке. Повреждает ключевые элементы электрических схем, приводя всю систему в… … Энциклопедический словарь

    ЭЛЕКТРОМАГНИТНОЕ (МИКРОВОЛНОВОЕ) ОРУЖИЕ мощный электронный импульс, накрывающий площадь в радиусе 50 км от центра применения. Проникает внутрь строений через швы и трещины в отделке. Повреждает ключевые элементы электрических схем, приводя всю… … Большой Энциклопедический словарь

    ЭЛЕКТРОМАГНИТНОЕ ОРУЖИЕ - оружие, поражающим фактором к рого является мощный, обычно импульсный, поток эл. магн. волн радиочастотного (см. Сверхвысокочастотное оружие), когерентного оптич. (см. Лазерное оружие) и некогерентного оптич. (см.… … Энциклопедия РВСН

    - (англ. Directed energy weapon, DEW) оружие, излучающее энергию в заданном направлении без использования проводов, дротиков и других проводников, для достижения летального или нелетального эффекта. Данный вид вооружения существует, но… … Википедия

    Оружие нелетального (несмертельного) действия (ОНД) условно называемое в средствах массовой информации «гуманным», это вооружение предназначено для уничтожения техники, а также временного вывода из строя живой силы противника, без причинения… … Википедия

    - (нетрадиционное оружие) новые виды оружия, поражающее действие которых основывается на ранее не использовавшихся в оружии процессах и явлениях. К концу 20 в. в различных стадиях исследований и разработки находились генетическое оружие,… …

    - (нелетальное) специальные виды оружия, способные кратковременно или на длительный срок лишать противника возможности вести боевые действия без нанесения ему безвозвратных потерь. Предназначаются для тех случаев, когда применение оружия обычного,… … Словарь черезвычайных ситуаций

    ОРУЖИЕ НЕСМЕРТЕЛЬНОГО ДЕЙСТВИЯ - специальные виды оружия, способные кратковременно или на длительный срок лишать противника возможности вести боевые действия без нанесения ему безвозвратных потерь. Предназначается для тех случаев, когда применение обычного оружия, а тем более… … Юридическая энциклопедия

    У этого термина существуют и другие значения, см. Оружие … Википедия

Идея использования электрической энергии для стрельбы не является изобретением последних десятилетий. Принцип метания снаряда с помощью катушечной электромагнитной пушки был изобретен в 1895 г. австрийским инженером, представителем венской школы пионеров космонавтики Францем Оскаром Лео-Эльдером фон Гефтом. Будучи еще студентом, Гефт «заболел» космонавтикой. Под влиянием романа Жюля Верна «С Земли на Луну» он начал с проекта пушки, с помощью которой можно запускать космические корабли на Луну. Гефт понимал, что огромные ускорения порохового орудия запрещают применять вариант французского фантаста, и предложил электрическую пушку: в соленоиде-стволе при протекании электрического тока возникает магнитное поле, которое разгоняет ферромагнитный снаряд, «втягивая» его вовнутрь соленоида, при этом снаряд разгоняется более плавно. Проект Гефта так и остался проектом — реализовать его на практике тогда не представлялось возможным. Впоследствии такое устройство было названо пушкой Гаусса (Gauss gun) по имени немецкого ученого Карла Фридриха Гаусса, заложившего основы математической теории электромагнетизма.

В 1901 г. профессор физики университета Осло Кристиан Олаф Берхард Биркеланд получил патент Норвегии № 11201 на «новый метод выстреливания снарядов с помощью электромагнитных сил» (на электромагнитную пушку Гаусса). Эта пушка предназначалась для стрельбы по наземным целям. В том же году Биркеланд построил свою первую пушку Гаусса с длиной ствола 1 м. При помощи этой пушки ему удалось в 1901-1902 гг. разогнать снаряд массой 500 г до скорости 50 м/с. Расчетная дальность стрельбы при этом была не более 1 000 м (результат достаточно слабый даже для начала ХХ в.). С помощью второй большой пушки (калибр 65 мм, длина ствола 3 м), построенной в 1903 г., Биркеланд разогнал снаряд до скорости примерно 100 м/с, при этом снаряд пробивал насквозь деревянную доску толщиной 5 дюймов (12,7 см) (стрельба происходила в помещении). В настоящее время эта пушка (рис. 1) выставлена в музее Университета Осло. Следует сказать, что созданием этой пушки Биркеланд занялся в целях получения значительных финансовых средств, необходимых ему для проведения научных исследований в области такого явления, как северное сияние. Стремясь продать свое изобретение, Биркеланд устроил для общественности и заинтересованных лиц демонстрацию этой пушки в действии в университете Осло. Увы, испытания не удались, поскольку короткое электрическое замыкание в пушке вызвало пожар и выход ее из строя. После возникшего переполоха уже никто не хотел приобретать ни пушку, ни патент. Пушку можно было бы отремонтировать, но Биркеланд отказался от дальнейшего проведения работ в этом направлении и совместно с инженером Эйде занялся производством искусственных минеральных удобрений, принесших ему средства, необходимые для научных исследований.

В 1915 г. русские инженеры Н. Подольский и М. Ямпольский создали проект сверхдальнобойной пушки (магнито-фугального орудия) с дальностью стрельбы 300 км. Длина ствола пушки планировалась около 50 м, начальная скорость снаряда 915 м/с. Дальше проекта дело не пошло. Проект был отклонен Артиллерийским комитетом Главного артиллерийского управления Российской императорской армии, посчитавшим, что время для подобных проектов еще не пришло. Одна из причин отказа — сложность создания мощной передвижной электростанции, которая всегда бы находилась рядом с пушкой.

Какова же должна была быть мощность такой электростанции? Для метания, например, снаряда из 76-миллиметровой огнестрельной пушки затрачивается огромная энергия в 113 000 кгм, т. е. 250 000 л. с. Именно такая энергия необходима для стрельбы из 76-миллиметровой неогнестрельной пушки (например, электрической) для метания снаряда на такое же расстояние. Но при этом неизбежны существенные потери энергии, составляющие не менее 50 %. Следовательно, мощность электрической пушки составляла бы никак не менее 500 000 л. с., а это мощность огромной электростанции. Кроме того, для сообщения снаряду этой огромной энергии в ничтожно малый промежуток времени нужен ток огромной силы, который практически равен току короткого замыкания. Для увеличения времени действия тока необходимо удлинять ствол электрического орудия, иначе не разогнать снаряд до необходимой скорости. В этом случае длина ствола может составить 100 и более метров.

В 1916 г. французский изобретатель Андре Луи Октав Фашон Виллепле создал модель электромагнитной пушки. Используя в качестве ствола цепочку катушексоленоидов, на которые последовательно подавалось напряжение, его действующая модель успешно разогнала снаряд массой 50 г до скорости 200 м/с. По сравнению с настоящими артиллерийскими установками результат получился достаточно скромным, но продемонстрировал принципиально новую возможность создания оружия, в котором снаряд разгоняется без помощи пороховых газов. Однако на этом все остановилось, поскольку создать полноразмерный экземпляр не представлялось возможным из-за огромных технических сложностей предстоящих работ и их высокой стоимости. На рис. 2 показан эскиз этой непостроенной электромагнитной пушки.

Далее выяснилось, что при прохождении ферромагнитного снаряда через соленоид на его концах образуются полюса, симметричные полюсам соленоида, из-за чего после прохождения центра соленоида снаряд, в соответствии с законом магнитных полюсов, начинает тормозиться. Это повлекло за собой изменение временной диаграммы тока в соленоиде, а именно: в момент подхода снаряда к центру соленоида питание переключается на следующий соленоид.

В 30-е гг. XX в. немецкий конструктор и пропагандист межпланетных полетов Макс Валье предложил оригинальную идею кольцевого электроускорителя, целиком состоящего из соленоидов (своего рода предок современного адронного коллайдера), в котором снаряд теоретически мог разгоняться до огромных скоростей. Затем переключением «стрелки» снаряд должен был направляться в трубу определенной длины, расположенную по касательной относительно основного кольца электроускорителя. Из этой трубы-ствола снаряд вылетал бы как из пушки. Так можно было бы запускать спутники Земли. Однако на то время уровень науки и техники не позволял изготовить такой электроускоритель-пушку.

В 1934 г. американский изобретатель Вирджил Ригсби из Сан-Антонио, Техас, изготовил два работающих электромагнитных пулемета и получил патент США № 1959737 на автоматическую электрическую пушку.

Первая модель получала энергию от обычного автомобильного аккумулятора и с использованием 17 электромагнитов разгоняла пули по 33-дюймовому стволу. Имеющийся в составе управляемый распределитель переключал напряжение питания с предыдущей катушки электромагнита на последующую катушку (по ходу движения пули) таким образом, чтобы вытягивающее магнитное поле всегда обгоняло пулю.

Вторая модель пулемета (рис. 3) выстреливала пули 22 калибра со скоростью 121 м/с. Заявленная скорострельность пулемета составляла 600 выстр./ мин, правда, на демонстрации пулемет стрелял со скоростью 7 выстр./мин. Причиной такой стрельбы, вероятно, была недостаточная мощность источника питания. Американские военные к электромагнитному пулемету остались равнодушны.

В 20-е и 30-е гг. прошлого столетия в СССР разработкой новых видов артиллерийского вооружения занималась КОСАРТОП — Комиссия особых артиллерийских опытов, причем в ее планах был проект создания электрического орудия на постоянном токе. Восторженным сторонником нового артиллерийского вооружения был Михаил Николаевич Тухачевский, впоследствии, с 1935 г., маршал Советского Союза. Однако расчеты, сделанные специалистами, показали, что такое орудие создать можно, но оно будет иметь очень большие размеры, а главное потребует так много электроэнергии, что рядом с ним придется иметь собственную электростанцию. Вскоре КОСАРТОП была распущена, и работы по созданию электрического орудия прекратились.

Во время Второй мировой войны в Японии разработали и построили пушку Гаусса, с помощью которой разогнали снаряд до скорости 335 м/с. По окончании войны американские ученые исследовали эту установку: снаряд массой 86 г удалось разогнать только до скорости 200 м/с. В результате выполненных исследований определились достоинства и недостатки пушки Гаусса.

Пушка Гаусса в качестве оружия обладает преимуществами, которыми не обладают другие виды оружия, в том числе стрелковое, а именно: отсутствие гильз, возможность бесшумного выстрела, если скорость снаряда не превышает скорости звука; относительно малая отдача, равная импульсу вылетевшего снаряда, отсутствие дополнительного импульса от пороховых газов или движущихся частей оружия, теоретически большая надежность и износоустойчивость, а также возможность использования в любых условиях, в том числе и в космическом пространстве. Однако, несмотря на кажущуюся простоту пушки Гаусса и перечисленные выше преимущества, использование ее в качестве орудия сопряжено с серьезными трудностями.

Во-первых, это большой расход энергии и, соответственно, низкий КПД установки. Лишь от 1 до 7 % заряда конденсатора переходит в кинетическую энергию снаряда. Частично этот недостаток можно компенсировать использованием многоступенчатой системы разгона снаряда, но в любом случае КПД не превышает 25 %.

Во-вторых, это большие вес и габариты установки при ее низкой эффективности.

Следует отметить, что в первой половине XX в. параллельно с развитием теории и практики пушки Гаусса развивалось и другое направление в создании электромагнитного баллистического оружия, использующее силу, возникающую при взаимодействии магнитного поля и электрического тока (силу Ампера).

Патент № 1370200 Андре Фашон-Виллепле

31 июля 1917 г. уже упоминавшийся раннее французский изобретатель Фашон-Виллепле подал в патентное ведомство США заявку на «Электрическую пушку или аппарат для продвижения вперед снарядов» и 1 марта 1921 г. получил на это устройство патент № 1370200. Конструктивно пушка представляла собой два параллельных медных рельса, помещенных внутри ствола из немагнитного материала. Ствол проходил через центры нескольких одинаковых электромагнитных блоков (ЭМБ), размещенных вдоль него с определенным интервалом. Каждый такой блок представлял собой Ш-образный сердечник, набранный из листов электротехнической стали, замкнутый перемычкой из того же материала, с обмотками, размещенными на крайних стержнях. Центральный стержень имел зазор в центре блока, в который и помещался ствол пушки. Оперенный снаряд помещался на рельсы. При включении аппарата ток от положительного полюса источника постоянного напряжения питания проходил через левый рельс, снаряд (слева направо), правый рельс, контакт включения ЭМБ, замкнутый крылом снаряда, катушки ЭМБ и возвращался к отрицательному полюсу источника питания. При этом в среднем стержне ЭМБ вектор магнитной индукции имеет направление сверху вниз. Взаимодействие этого магнитного потока и электрического тока, протекающего через снаряд, создает силу, приложенную к снаряду и направленную от нас, — силу Ампера (в соответствии с правилом левой руки). Под действием этой силы снаряд и получает ускорение. После вылета снаряда из первого ЭМБ его контакт включения выключается, а при подлете снаряда ко второму ЭМБ, контакт включения этого блока крылом снаряда включается, создается очередной импульс силы и т. д.

Во время Второй мировой войны в нацистской Германии идея Фашон-Виллепле была подхвачена Иохимом Ханслером, сотрудником министерства вооружений. В 1944 г. он спроектировал и изготовил 10-мм пушку LM-2. Во время ее испытаний 10-граммовый алюминиевый «снаряд» удалось разогнать до скорости 1,08 км/с. На основе этой разработки Люфтваффе было подготовлено техническое задание на электрическую зенитную пушку. Начальную скорость снаряда, содержащего 0,5 кг взрывчатки, требовалось обеспечить 2,0 км/с, скорострельность при этом должна была быть 6-12 выстр./мин. В серию данная пушка пойти не успела — под ударами союзников Германия терпела сокрушительное поражение. Впоследствии опытный образец и проектная документация попали в руки американских военных. По результатам проведенных ими испытаний в 1947 г. было сделано заключение: для нормального функционирования пушки требовалась энергия, которой можно было осветить половину Чикаго.

Полученные результаты испытаний пушек Гаусса и Ханслера привели к тому, что в 1957 г. ученые — участники симпозиума по сверхскоростным ударам, проводимого ВВС США, пришли к следующему заключению: «…. маловероятно, что в ближайшем будущем техника электромагнитных пушек будет успешна».

Тем не менее, несмотря на отсутствие серьезных практических результатов, удовлетворяющих требованиям военных, многие ученые и инженеры не согласились с этими выводами и продолжили исследования в области создания электромагнитного баллистического оружия.

Шинные электромагнитные ускорители плазмы

Следующий шаг в развитии электромагнитного баллистического оружия был сделан в результате создания шинных электромагнитных ускорителей плазмы. Греческое слово plasma обозначает нечто вылепленное. Термин «плазма» в физике был введен в 1924 г. американским ученым Ирвингом Лангмюром, изучавшим свойства ионизированного газа в связи с работами по новым источникам света.

В 1954-1956 гг. в США профессор Уинстон Х. Бостик, работая в Ливерморской национальной лаборатории им Э. Лоуренса, входящей в состав Калифорнийского университета, изучал «запакованные» в магнитное поле плазмы, полученные с помощью специальной «плазменной» пушки. Эта «пушка» состояла из стеклянного закрытого цилиндра диаметром четыре дюйма, внутри которого были установлены параллельно два электрода из титана, насыщенного тяжелым водородом. Воздух из сосуда был удален. В состав устройства также входил источник внешнего постоянного магнитного поля, вектор индукции магнитного потока которого имел направление перпендикулярное плоскости электродов. Один из этих электродов был подключен через циклический выключатель к одному полюсу высоковольтного многоамперного источника постоянного тока, а второй электрод — к другому полюсу этого же источника. При включении циклического выключателя в зазоре между электродами возникает пульсирующая электрическая дуга, сила тока в которой достигает нескольких тысяч ампер; продолжительность каждой пульсации примерно 0,5 мкс. При этом с обоих электродов как бы испаряются ионы дейтерия и электроны. Образовавшийся сгусток плазмы, замыкает электрический контур между электродами и под действием пондеромоторной силы разгоняется и стекает с концов электродов, преобразуясь при этом в кольцо — тороид плазмы, так называемый плазмоид; это кольцо выталкивается вперед со скоростью, достигающей 200 км/с.

Исторической справедливости ради следует отметить, что в Советском Союзе еще в 1941- 1942 гг. в блокадном Ленинграде профессор Георгий Ильич Бабат создал высокочастотный трансформатор, вторичной обмоткой которого служили не витки проволоки, а кольцо ионизированного газа, плазмоид. В начале 1957 г. в СССР молодой ученый Алексей Иванович Морозов опубликовал в журнале экспериментальной и теоретической физики, ЖЭТФ, статью «Об ускорении плазмы магнитным полем», теоретически рассмотрев в ней процесс ускорения магнитным полем струи плазмы, по которой протекает ток в вакууме, а спустя полгода в этом же журнале была опубликована статья академика АН СССР Льва Андреевича Арцимовича и его сотрудников «Электродинамическое ускорение сгустков плазмы», в которой они предлагают использовать собственное магнитное поле электродов для разгона плазмы. В выполненном ими эксперименте электрический контур состоял из конденсаторной батареи 75 мкФ, подключенной через шаровой разрядник к массивным медным электродам («рельсам»). Последние были помещены в стеклянную цилиндрическую камеру, находящуюся под непрерывной откачкой. Предварительно поперек «рельсов» была положена тонкая металлическая проволочка. Вакуум в разрядной камере в момент времени, предшествующий эксперименту, составлял 1-2×10 -6 мм рт. ст.

При подаче напряжения 30 кВ на «рельсы» проволочка взрывалась, образовавшаяся плазма продолжала перемыкать «рельсы», и в контуре протекал большой ток.

Как известно, направление линий магнитного поля определяется по правилу правого буравчика: если ток течет в направлении от наблюдателя, линии поля направлены по часовой стрелке. В результате между рельсами создается общее однонаправленное магнитное поле, вектор индукции магнитного потока которого направлен перпендикулярно плоскости, в которой находятся рельсы. На ток, протекающий через плазму и находящийся в этом поле, действует сила Ампера, направление которой определяется правилом левой руки: если расположить руку по направлению течения тока так, чтобы линии магнитного поля входили в ладонь, большой палец укажет направление силы. В результате плазма разгонится вдоль рельсов (так же разгонялся бы и металлический проводник или снаряд, скользящий по рельсам). Максимальная скорость движения плазмы на расстоянии 30 см от начального положения проволочки, полученная из обработки сверхскоростных фотографических измерений, составила 120 км/с. Собственно говоря, это как раз та схема ускорителя, которую сейчас принято называть рельсотроном , в английской терминологии — railgun, принцип действия которого показан на рис. 4, где 1 — рельс, 2 — снаряд, 3 — сила, 4 — магнитное поле, 5 — электрический ток.

Однако длительное время речь не шла о том, чтобы поставить на рельсы снаряд и сделать из рельсотрона оружие. Для реализации этой идеи нужно было решить ряд задач:

  • создать низкоомный малоиндуктивный источник постоянного напряжения питания максимально возможной мощности;
  • разработать требования к длительности и форме разгонного импульса тока и ко всей системе рельсотрона в целом, обеспечивающие эффективное ускорение снаряда и высокий КПД преобразования электромагнитной энергии в кинетическую энергию снаряда, и реализовать их;
  • разработать такую пару «рельсы — снаряд», которая, обладая максимальной электрической проводимостью, сможет выдержать тепловой удар, возникающий при выстреле, от протекания тока и трения снаряда о рельсы;
  • разработать такую конструкцию рельсотрона, которая выдерживала бы воздействие на рельсы сил Ампера, связанных с протеканием через них гигантского тока (под действием этих сил рельсы стремятся «разбежаться» друг от друга).

Главным, конечно, было отсутствие необходимого источника питания, и такой источник появился. Но об этом в окончании статьи.

Нашли опечатку? Выделите фрагмент и нажмите Ctrl+Enter.

Sp-force-hide { display: none;}.sp-form { display: block; background: #ffffff; padding: 15px; width: 960px; max-width: 100%; border-radius: 5px; -moz-border-radius: 5px; -webkit-border-radius: 5px; border-color: #dddddd; border-style: solid; border-width: 1px; font-family: Arial, "Helvetica Neue", sans-serif; background-repeat: no-repeat; background-position: center; background-size: auto;}.sp-form input { display: inline-block; opacity: 1; visibility: visible;}.sp-form .sp-form-fields-wrapper { margin: 0 auto; width: 930px;}.sp-form .sp-form-control { background: #ffffff; border-color: #cccccc; border-style: solid; border-width: 1px; font-size: 15px; padding-left: 8.75px; padding-right: 8.75px; border-radius: 4px; -moz-border-radius: 4px; -webkit-border-radius: 4px; height: 35px; width: 100%;}.sp-form .sp-field label { color: #444444; font-size: 13px; font-style: normal; font-weight: bold;}.sp-form .sp-button { border-radius: 4px; -moz-border-radius: 4px; -webkit-border-radius: 4px; background-color: #0089bf; color: #ffffff; width: auto; font-weight: 700; font-style: normal; font-family: Arial, sans-serif;}.sp-form .sp-button-container { text-align: left;}

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное учреждение высшего профессионального образования

«НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ

ТОМСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

ПО ФИЗИКЕ

Электромагнитное оружие

Томск 2014

Введение

Электромагнитные ускорители масс

1 Пушка Гаусса

4 Микроволновые пушки

5 Электромагнитная бомба

6 Сверхрадиочастотное оружие

Воздействие ЭМО на объекты

Тактика применения ЭМО

Защита от ЭМО

Список литературы

Введение

Электромагнитное оружие (ЭМО) - оружие, в котором для придания начальной скорости снаряду используется магнитное поле, либо энергия электромагнитного излучения используется непосредственно для поражения цели.

В первом случае магнитное поле используется как альтернатива взрывчатым веществам в огнестрельном оружии. Во втором - используется возможность наведения токов высокого напряжения и выведения из строя электрического и электронного оборудования в результате возникающего перенапряжения, либо вызывание болевых эффектов или иных эффектов у человека. Оружие второго типа позиционируется как безопасное для людей и служащее для вывода из строя техники противника или приводящих к небоеспособности живой силы противника; относится к категории Оружие нелетального действия.

Помимо магнитных ускорителей масс, существует множество других типов оружия, использующих для своего функционирования электромагнитную энергию. Рассмотрим наиболее известные и распространенные их типы.

1. Электромагнитные ускорители масс

1.1 Пушка Гаусса

Названа по имени ученого и математика Гаусса, в честь имени которого названы единицы измерения магнитного поля. 10000Гс = 1Тл) можно описать так. В цилиндрической обмотке (соленоиде) при протекании через нее электрического тока возникает магнитное поле. Это магнитное поле начинает втягивать внутрь соленоида железный снаряд, который от этого начинает разгоняться. Если в тот момент, когда снаряд окажется в середине обмотки ток в последней отключить, то втягивающее магнитное поле исчезнет и снаряд, набравший скорость, свободно вылетит через другой конец обмотки. Чем сильнее магнитное поле и чем быстрее оно отключается - тем сильнее вылетает снаряд.

На практике конструкция простейшего гаусс-гана представляет собой намотанную в несколько слоев на диэлектрическую трубку медную проволоку и конденсатор большой емкости. Внутрь трубки перед самым началом обмотки устанавливается железный снаряд (часто гвоздь со спиленной шляпкой) и предварительно заряженный конденсатор при помощи электрического ключа замыкается на обмотку.

Параметры обмотки, снаряда и конденсаторов должны быть согласованы таким образом, чтобы при выстреле к моменту подлета снаряда к середине обмотки ток в последней уже успевал бы уменьшится до минимального значения, т.е. заряд конденсаторов был бы уже полностью израсходован. В таком случае КПД одноступенчатого МУ будет максимальным.

Рисунок 1. Схема сборки "гаус гана"

электромагнитный оружие ускоритель частота

1.2 Rail gun

Помимо “гаусс ганов”, существует ещё как минимум 2 типа ускорителей масс - индукционные ускорители масс (катушка Томпсона) и рельсовые ускорители масс, так же известные как “рэйл ганы” (от англ. “Rail gun” - рельсовая пушка).

Рисунок 2. Испытательный выстрел Rail Gun

Рисунок 3. Американский Rail Gun

В основу функционирования индукционного ускорителя масс положен принцип электромагнитной индукции. В плоской обмотке создается быстро нарастающий электрический ток, который вызывает в пространстве вокруг переменное магнитное поле. В обмотку вставлен ферритовый сердечник, на свободный конец которого надето кольцо из проводящего материала. Под действием переменного магнитного потока, пронизывающего кольцо в нём возникает электрический ток, создающий магнитное поле противоположной направленности относительно поля обмотки. Своим полем кольцо начинает отталкиваться от поля обмотки и ускоряется, слетая со свободного конца ферритового стержня. Чем короче и сильнее импульс тока в обмотке, тем мощнее вылетает кольцо.

Иначе функционирует рельсовый ускоритель масс. В нем проводящий снаряд движется между двух рельс - электродов (откуда и получил свое название - рельсотрон), по которым подается ток. Источник тока подключается к рельсам у их основания, поэтому ток течет как бы в догонку снаряду и магнитное поле, создаваемое вокруг проводников с током, полностью сосредоточенно за проводящим снарядом. В данном случае снаряд является проводником с током, помещённым в перпендикулярное магнитное поле, созданное рельсами. На снаряд по всем законам физики действует сила Лоренца, направленная в сторону противоположную месту подключения рельс и ускоряющая снаряд. С изготовлением рельсотрона связан ряд серьезных проблем - импульс тока должен быть настолько мощным и резким, чтобы снаряд не успел бы испарится (ведь через него протекает огромный ток!), но возникла бы ускоряющая сила, разгоняющая его вперед. Поэтому материал снаряда и рельс должен обладать как можно более высокой проводимостью, снаряд как можно меньшей массой, а источник тока как можно большей мощностью и меньшей индуктивность. Однако особенность рельсового ускорителя в том, что он способен разгонять сверхмалые массы до сверх больших скоростей. На практике рельсы изготавливают из безкислородной меди покрытой серебром, в качестве снарядов используют алюминиевые брусочки, в качестве источника питания - батарею высоковольтных конденсаторов, а самому снаряду перед вхождением на рельсы стараются придать как можно большую начальную скорость, используя для этого пневматические или огнестрельные пушки.

Помимо ускорителей масс к электромагнитному оружия относятся источники мощного электромагнитного излучения, такие как лазеры и магнетроны.

1.3 Лазер

Он известен всем. Состоит из рабочего тела, в котором при выстреле создается инверсная населенность квантовых уровней электронами, резонатора для увеличения пробега фотонов внутри рабочего тела и генератора, который эту самую инверсную населённость будет создавать. В принципе, инверсную населённость можно создать в любом веществе и в наше время проще сказать, из чего НЕ делают лазеры. Лазеры могут классифицироваться по рабочему телу: рубиновые, СО2, аргоновые, гелий-неоновые, твердотельные (GaAs), спиртовые, и т.д., по режиму работы: импульсные, непрерывные, псевдонепрерывные, могут классифицироваться по количеству используемых квантовых уровней: 3х уровневый, 4х уровневый, 5и уровневые. Так же лазеры классифицируют по частоте генерируемого излучения - микроволновые, инфракрасные, зеленые, ультрафиолетовые, рентгеновские, и т.д. КПД лазера обычно не превышает 0,5%, однако сейчас ситуация изменилась - полупроводниковые лазеры (твердотельные лазеры на основе GaAs) имеют КПД свыше 30% и в наши дни могут обладать мощностью выходного излучения аж до 100(!) Вт, т.е. сравнимую с мощными "классическими" рубиновыми или СО2 лазерами. Кроме того, существуют газодинамические лазеры, менее всего похожие на другие типы лазеров. Их отличие в том, что они способны производить непрерывный луч огромной мощности, что позволяет использовать их для военных целей. В сущности, газодинамический лазер представляет собой реактивный двигатель, перпендикулярно газовому потоку в котором стоит резонатор. Раскаленный газ, выходящий из сопла, находится в состоянии инверсной населённости. Стоит добавить к нему резонатор - и многомеговаттный поток фотонов полетит в пространство.

1.4 Микроволновые пушки

Основным функциональным узлом является магнетрон - мощный источник микроволнового излучения. Недостатком микроволновых пушок является их чрезмерная даже по сравнению с лазерами опасность применения - микроволновое излучение хорошо отражается от препятствий и в случае стрельбы в закрытом помещении облучению подвергнется буквально все внутри! Кроме того, мощное микроволновое излучение смертельно для любой электроники, что так же надо учитывать.

Рисунок 4. Передвижная радиолокационная система

1.5 Электромагнитная бомба

Электромагнитная бомба, также называемая «электронная бомба» - генератор радиоволн высокой мощности, приводящих к уничтожению электронного оборудования командных пунктов, систем связи и компьютерной техники. Создаваемая электрическая наводка по мощности воздействия на электронику оказывается сравнимой с ударом молнии. Относится к классу «оружие нелетального действия».

По принципу разрушения техники разделяются на низкочастотные, использующие для доставки разрушающего напряжения наводку в линиях электропередач, и высокочастотные, вызывающие наводку непосредственно в элементах электронных устройств и обладающие высокой проникающей способностью - достаточно мелких щелей для вентиляции для проникновения волн внутрь оборудования.

Впервые эффект электромагнитной бомбы был зафиксирован в 50-е годы XX века, когда проходили испытания американской водородной бомбы. Взрыв был произведён в атмосфере над Тихим океаном. Результатом было нарушение электроснабжения на Гаваях из-за воздействия электромагнитного импульса высотного ядерного взрыва.

Изучение показало, что взрыв имел непредвиденные последствия. Лучи достигли Гавайских островов, расположенных в сотнях километров от места испытания, и радиопередачи были нарушены до самой Австралии. Взрыв бомбы, помимо мгновенных физических результатов, воздействовал на электромагнитные поля на огромном расстоянии. Однако в дальнейшем взрыв ядерной бомбы как источник электромагнитной волны был признан неэффективным из-за малой точности, а также множества побочных эффектов и неприемлемости в политическом плане.

В качестве одного из вариантов генератора была предложена конструкция в форме цилиндра, в котором создаётся стоячая волна; в момент активации стенки цилиндра быстро сжимаются направленным взрывом и разрушаются на торцах, в результате чего создаются волна очень малой длины. Поскольку энергия излучения обратно пропорциональна длине волны, в результате уменьшения объёма цилиндра мощность излучения резко возрастает.

Доставка этого устройства может быть произведена любым известным способом - от авиации до артиллерии. Применяются как и более мощные боеприпасы с использованием в боевой части ударно-волновых излучателей (УВИ), так и менее мощные с использованием пьезоэлектрических генераторов частоты (ПГЧ)

1.6 Сверхрадиочастотное оружие

Радиочастотное - оружие, действие которого основано на использовании электромагнитных излучений сверхвысокой (СВЧ) частоты (0,3-30 ГГц) или очень низкой частоты (менее 100 Гц). Объектами поражения этого оружия является живая сила. При этом имеется в виду способность электромагнитных излучений в диапазоне сверхвысоких и очень низких частот вызывать повреждения жизненно важных органов человека (мозга, сердца, сосудов). Оно способно воздействовать на психику, нарушая при этом восприятие окружающей действительности, вызывая слуховые галлюцинации и др.

Когда впервые это оружие было испробовано, наблюдалось много изменений в поведении организмов (в данном случае подопытных крыс). Например, крысы «шарахались» от стен, «защищались» от чего-то. Некоторые подверглись дезориентации, некоторые погибли (разрыв мозга или сердечной мышцы). В журнале «Наука и жизнь» описывались подобные опыты с «электромагнитным стимулированием мозга», результат их был таков: у крыс нарушалась работа памяти и пропадали условные рефлексы.

Так же существует теория, согласно которой с помощью электромагнитного излучения можно влиять на психику человека, не разрушая организм, а вызывая определенные эмоции либо склонять к каким-либо действиям.

Рисунок 5. Танк Будущего РФ

2. Воздействие ЭМО на объекты

Принцип действия ЭМО основан на кратковременном электромагнитном излучении большой мощности, способном вывести из строя радиоэлектронные устройства, составляющие основу любой информационной системы. Элементная база радиоэлектронных устройств весьма чувствительна к энергетическим перегрузкам, поток электромагнитной энергии достаточно высокой плотности способен выжечь полупроводниковые переходы, полностью или частично нарушив их нормальное функционирование. Как известно, напряжения пробоя переходов невысоки и составляют от единиц до десятков вольт в зависимости от типа прибора. Так, даже у кремниевых сильноточных биполярных транзисторов, обладающих повышенной прочностью к перегревам, напряжение пробоя находится в пределах от 15 до 65 В, а у арсенидгаллиевых приборов этот порог равен 10 В. ЗУ, составляющие существенную часть любого компьютера, имеют пороговые напряжения порядка 7 В. Типовые логические ИС на МОП-структурах - от 7 до 15 В, а микропроцессоры обычно прекращают свою работу при напряжениях 3,3-5 В.

Помимо необратимых отказов импульсное электромагнитное воздействие может вызвать восстанавливаемые отказы, или парализацию радиоэлектронного устройства, когда из-за возникающих перегрузок оно на какой-то отрезок времени теряет чувствительность. Возможны также ложные срабатывания чувствительных элементов, что может привести, например, к детонации боеголовок ракет, бомб, артиллерийских снарядов и мин.

По спектральным характеристикам ЭМО можно разделить на два вида: низкочастотное, создающее электромагнитное импульсное излучение на частотах ниже 1 МГц, и высокочастотное, обеспечивающее излучение СВЧ-диапазона. Оба вида ЭМО имеют различия также в способах реализации и в какой-то мере в путях воздействия на радиоэлектронные устройства. Так, проникновение низкочастотного электромагнитного излучения к элементам устройств обусловлено, в основном, наводками на проводную инфраструктуру, включающую телефонные линии, кабели внешнего питания, подачи и съема информации. Пути же проникновения электромагнитного излучения СВЧ-диапазона более обширны - они еще включают прямое проникновение в радиоэлектронную аппаратуру через антенную систему, поскольку СВЧ-спектр охватывает и рабочую частоту подавляемой аппаратуры. Имеющее место проникновение энергии через конструктивные отверстия и стыки зависит от их размеров и длины волны электромагнитного импульса - наиболее сильная связь возникает на резонансных частотах, когда геометрические размеры соизмеримы с длиной волны. На волнах, длиннее резонансной, связь резко уменьшается, поэтому воздействие низкочастотного ЭМО, зависящее от наводок через отверстия и стыки в корпусе аппаратуры, невелико. На частотах же выше резонансной спад связи происходит медленнее, но из-за множества типов колебаний в объеме аппаратуры возникают острые резонансы.

Если поток СВЧ-излучения достаточно интенсивен, то воздух в отверстиях и стыках ионизируется и становится хорошим проводником, экранирующим аппаратуру от проникновения электромагнитной энергии. Таким образом, увеличение падающей на объект энергии может привести к парадоксальному уменьшению энергии, воздействующей на аппаратуру, и, как следствие, к снижению эффективности ЭМО.

Электромагнитное оружие обладает также биологическим воздействием на животных и человека, в основном связанное с их нагревом. При этом страдают не только непосредственно нагреваемые органы, но и те, что напрямую не контактируют с электромагнитным излучением. В организме возможны хромосомные и генетические изменения, активация и дезактивация вирусов, изменения иммунологических и даже поведенческих реакций. Опасным считается подъем температуры тела на 1оС, и продолжение облучения в этом случае может привести к смертельному исходу.

Экстраполяция данных, полученных на животных, позволяет установить опасную для человека плотность мощности. При длительном облучении электромагнитной энергией с частотой до 10 ГГц и плотностью мощности от 10 до 50 мВТ/см2 могут возникнуть конвульсии, состояние повышенной возбудимости и произойти потеря сознания. Заметный нагрев тканей при воздействии одиночных импульсов такой же частоты происходит при плотности энергии около 100 Дж/см2. На частотах выше 10 ГГц допустимый порог нагрева снижается, поскольку вся энергия поглощается поверхностными тканями. Так, на частоте в десятки гигагерц и плотности энергии в импульсе всего 20 Дж/см2 наблюдается ожог кожи.

Возможны и другие последствия облучения. Так, может временно нарушиться нормальная разность потенциалов мембран клеток тканей. При воздействии одиночного СВЧ-импульса длительностью от 0,1 до 100 мс с плотностью энергии до 100 мДж/см2 меняется активность нервных клеток, возникают изменения в электроэнцефалограмме. Импульсы малой плотности (до 0,04 мДж/см2) вызывают слуховые галлюцинации, а при более высокой плотности энергии может быть парализован слух или даже повреждена ткань слуховых органов.

3. Тактика применения ЭМО

Электромагнитное оружие может применяться как в стационарном, так и мобильном вариантах. При стационарном варианте легче выполнить массогабаритные и энергетические требования к аппаратуре и упростить ее обслуживание. Но в этом случае необходимо обеспечивать высокую направленность электромагнитного излучения в сторону цели во избежание поражения собственных радиоэлектронных устройств, что возможно только благодаря применению остронаправленных антенных систем. При реализации СВЧ-излучения использование остронаправленных антенн не составляет проблемы, чего нельзя сказать относительно низкочастотного ЭМО, для которого мобильный вариант имеет ряд преимуществ. Прежде всего, легче решается проблема защиты собственных радиоэлектронных средств от воздействия ЭМО, поскольку боевое средство можно доставить непосредственно к месту расположения объекта воздействия и только там привести его в действие. И кроме того, отпадает необходимость в применении направленных антенных систем, а в ряде случаев вообще можно обойтись без антенн, ограничившись непосредственной электромагнитной связью между генератором ЭМО и электронными устройствами противника.

Доставка ЭМО к цели возможна также с помощью специальных снарядов. Электромагнитный боеприпас среднего калибра (100-120 мм) при срабатывании формирует импульс излучения длительностью в несколько микросекунд со средней мощностью в десятки мегаватт и пиковой - в сотни раз больше. Излучение - изотропное, способное на расстоянии 6-10 м подорвать детонатор, а на расстоянии до 50 м - вывести из строя систему опознавания “свой-чужой”, блокировать пуск зенитной управляемой ракеты из переносного зенитно-ракетного комплекса, временно или окончательно вывести из строя неконтактные противотанковые магнитные мины .

При размещении ЭМО на крылатой ракете момент его срабатывания определяется датчиком навигационной системы, на противокорабельной ракете - радиолокационной головкой наведения, а на ракете “воздух-воздух” - непосредственно системой взрывателя. Использование ракеты в качестве носителя электромагнитной боеголовки неизбежно влечет ограничение массы ЭМО из-за необходимости размещения электрических аккумуляторов для приведения в действие генератора электромагнитного излучения. Отношение полной массы боеголовки к массе запускаемого оружия составляет примерно от 15 до 30% (для американской ракеты AGM/BGM-109 “Томагавк” - 28%).

Эффективность ЭМО была подтверждена в военной операции “Буря в пустыне”, где применялись преимущественно самолеты и ракеты и где основой военной стратегии было воздействие на электронные устройства сбора и обработки информации, целеуказания и элементы связи с целью парализации и дезинформации системы ПВО.

Рисунок 6. Генератор сжатия магнитного потока

4. Защита от ЭМО

Наиболее эффективная защита от ЭМО - это, конечно, предотвращение его доставки путем физического уничтожения носителей, как и при защите от ядерного оружия. Однако это не всегда достижимо, поэтому следует прибегать также к мерам электромагнитной защиты самой радиоэлектронной аппаратуры. К таким мерам, очевидно, следует прежде всего отнести полную экранировку самой аппаратуры, а также помещений, в которых она размещается. Известно, что если помещение уподобить клетке Фарадея, предотвращающей проникновение внешнего электромагнитного поля, то защита аппаратуры от ЭМО будет полностью обеспечена. Однако в реальности такая экранировка невозможна, поскольку аппаратуре необходимы подводка электропитания извне и каналы связи для приема и передачи информации. Сами каналы связи также должны иметь защиту от проникновения по ним к аппаратуре электромагнитных воздействий. Установка фильтров в данном случае не спасает, поскольку они работают только в определенной полосе частот и соответствующим образом настраиваются, и фильтры, предназначенные для защиты от низкочастотного ЭМО, не будут защищать от воздействия высокочастотного и наоборот. Хорошую защиту от электромагнитных наводок по каналам связи могут обеспечить используемые вместо них волоконно-оптические линии, однако для цепей питания этого сделать невозможно.

Существует достаточно оснований полагать, что в будущем все значимые боевые операции будут начинаться с массированного применения ЭМО, способного нанести серьезный ущерб военно-промышленному потенциалу страны и облегчить проведение последующих военных операций.

Учитывая эффективность и перспективность использования ЭМО в военных операциях, а также преимущества тех, кто владеет этим видом оружия, разработку ЭМО держат в строжайшей тайне под грифом более высоким, чем “Совершенно секретно”, и все проблемы обсуждают только на закрытых заседаниях. Примером может служить секретная научно-техническая конференция, проведенная в июне 1995 г. в предместье Вашингтона только для американцев, на которой обсуждались эффекты от воздействия ЭМО не только на радиоэлектронное оборудование, но также на животных и человека . Отсутствие данных о результатах использования ЭМО в Югославии объясняется и режимом секретности, и желанием сохранить столь эффективное оружие для более серьезных боевых операций.

Сегодня технологией ЭМО в полной мере владеют только США и Россия, однако нельзя не учитывать возможности овладения этой технологией и другими странами, в том числе странами третьего мира.

Заключение

Об электромагнитном оружии в последнее время ходит множество слухов, мифов и легенд - от бомб, которые «выключают свет» в городах, до чемоданчиков, которые якобы способны вывести из строя любую сложную электронику в радиусе чуть ли не нескольких километров. Хотя весьма малая часть этих слухов имеет хоть какое-нибудь отношение к действительности, электромагнитное оружие действительно существует и даже рассматривается как весьма перспективное направление развития вооружений в современном мире, где войны уже ведутся с помощью сложного, высокотехнологичного и высокоточного оружия.

Разумеется, с помощью электромагнитного оружия никто не собирается «выключать свет» в городах (даже в отдельных районах или домах) - такое оружие призвано решать совсем другие задачи.

Список литературы

1) Основные виды ЭМО (2010)

) Электромагнитное оружие "Мифы и реальность" (Лекция Александр Прищепенко Доктор физико-математических наук 11 ноября 2010г)

) Новое электромагнитное оружие 2010

В последнее время в открытой печати все чаще появляются публикации об электромагнитном оружии (ЭМО). Материалы об ЭМО пестрят различными сенсационными, а порой и откровенно антинаучными «выкладками» и экспертными мнениями, часто настолько полярными, что складывается впечатление, что люди говорят вообще о разных вещах. Электромагнитное оружие называют и «технологиями будущего» и одной из «величайших обманок» в истории. Но истина, как это часто бывает, лежит где-то посередине…

Электромагнитное оружие (ЭМО) - оружие, в котором для придания начальной скорости снаряду используется магнитное поле, либо энергия электромагнитного излучения используется непосредственно для поражения или нанесения повреждений технике и живой силе противника. В первом случае магнитное поле используется как альтернатива взрывчатым веществам в огнестрельном оружии. Во втором - используется возможность наведения токов высокого напряжения и электромагнитных импульсов высокой частоты для выведения из строя электрического и электронного оборудования противника. В третьем - применяется эм-излучение определенной частоты и напряженности с целью вызывание болевых или иных (страха, паники, слабости) эффектов у человека. ЭМ оружие второго типа позиционируется как безопасное для людей и служащее для вывода из строя техники и средств связи. Электромагнитное оружие третьего типа, приводящее к временной небоеспособности живой силы противника, относится к категории оружия нелетального действия.

Электромагнитное оружие, разрабатываемое в настоящее время, можно разделить на несколько типов, различающихся по принципу использования свойств электромагнитного поля:

— Электромагнитная пушка (ЭМП)

— Система активного «отбрасывания» (САО)

— «Глушилки» — различные виды систем радиоэлектронной борьбы (РЭБ)

— Электромагнитные бомбы (ЭБ)

В первой части цикла статей, посвященных электромагнитному оружию, речь пойдет об электромагнитных пушках. Ряд стран, например США, Израиль и Франция активно проводят разработки в этой области, сделав ставку на использование электромагнитно-импульсных систем для генерации кинетической энергии беозарядов.

У нас, в России, пошли другим путем - основной упор сделали не на электронные пушки, как США или Израиль, а на системы радиоэлектронной борьбы и электромагнитные бомбы. Например, как утверждают специалисты, работающие над проектом «Алабуга», отработка технологии уже минула стадию полевых испытаний, в данный момент идет стадия доводки опытных образцов в целях увеличить мощность, точность и дальность излучения. Сегодня боевая часть «Алабуги», разорвавшись на высоте 200-300 метров, способна отключить всю радио- и электронную аппаратуру противника в радиусе 4 км и оставить войсковое подразделение масштаба батальон/полк без средств связи, управления и наведения огня, превратив всю имеющуюся технику противника в «груду металлолома». Может быть именно эту систему имел в виду Владимир Владимирович, когда недавно говорил, о «секретном оружии», которое Россия может применить в случае войны? Впрочем, подробнее про систему «Алабуга» и других новейших российских разработках в области ЭМО речь пойдет в следующем материале. А сейчас, давайте, вернемся к электромагнитным пушкам, наиболее известном и «раскрученном» в СМИ типе электромагнитного оружия.

Может возникнуть резонный вопрос - зачем вообще нужны ЭМ-пушки, разработка которых требует огромных затрат времени и ресурсов? Дело в том, что существующие артиллерийские системы (на основе порохов и взрывчатых веществ), по оценкам экспертов и ученых, достигли своего предела - скорость выпущенного с их помощью снаряда ограничена 2,5 км/сек. Для того, чтобы увеличить дальнобойность артиллерийских систем и кинетическую энергию заряда (а следовательно, и поражающую способность боевого элемента) необходимо увеличить начальную скорость снаряда до 3-4 км/сек, а существующие системы на это не способны. Для этого нужны принципиально новые решения.

Идея создания электромагнитной пушки зародилась практически одновременно в России и Франции в разгар Первой мировой войны. В её основу легли труды немецкого исследователя Йоганна Карла Фридриха Гаусса, который разработал теорию электромагнетизма, воплотившуюся в необычное устройство - электромагнитную пушку. Тогда, в начале ХХ века всё ограничилось опытными образцами, показавшими, к тому же, довольно посредственные результаты. Так французский опытный образец ЭМП смог разогнать 50-граммовый снаряд лишь до скорости 200 м/сек, что ни шло ни в какое сравнение с существовавшими на тот момент пороховыми артиллерийскими системами. Её российский аналог - «магнитно-фугальная пушка» и вовсе осталась лишь «на бумаге», - дальше чертежей дело не пошло. Всё дело в особенностях данного вида вооружения. Пушка Гаусса стандартной конструкции состоит из соленоида (катушки) с расположенным внутри него стволом из диэлектрического материала.

Пушка Гаусса заряжается снарядом из ферромагнетика. Чтобы заставить снаряд двигаться, на катушку подаётся электрический ток, создающий магнитное поле, благодаря действию которого снаряд «втягивается» в соленоид, - и скорость снаряда на выходе из «ствола» тем больше, чем мощнее сгенерированный электромагнитный импульс. В настоящее время ЭМ-пушки Гаусса и Томпсона, вследствие ряда принципиальных (и на данный момент неустранимых) недостатков, не рассматриваются с точки зрения практического применения, основным видом ЭМ-пушек, разрабатываемых для постановки на вооружение, являются «рельсотроны».

В состав рельсотрона входят мощный источник питания, коммутационная и управляющая аппаратура и два электропроводящих «рельса» длиной от 1 до 5 метров, которые являются своего рода «электродами», расположенными друг от друга на расстоянии примерно 1 см. В основу действия рельсотрона положен кумулятивный эффект, когда энергия электромагнитного поля взаимодействует с энергией плазмы, которая образуется в результате «сгорания» специальной вставки в момент подачи высокого напряжения. В нашей стране об электромагнитных пушках заговорили в 50-е годы, когда началась гонка вооружений, и тогда же начались работы по созданию ЭМП - «сверхоружия», способного в корне изменить расстановку сил в противостоянии с США. Советским проектом руководил выдающийся физик академик Л. А. Арцимович, один из ведущих мировых специалистов по изучению плазмы. Именно он заменил громоздкое название «электродинамический ускоритель массы» на всем известное сегодня - «рельсотрон». Разработчики рельсотронов сразу с толкнулись серьезной проблемой: электромагнитный импульс должен быть настолько мощным, чтобы возникла ускоряющая сила, способная разогнать снаряд до скорости, как минимум 2М (около 2,5 км/с), и вместе с тем настолько кратковременным, чтобы снаряд не успел «испариться» или разлететься на куски. Поэтому снаряд и рельс должны обладать как можно более высокой электрической проводимостью, а источник тока - как можно большей электрической мощностью и как можно меньшей индуктивностью. В данный момент эта фундаментальная проблема, проистекающая из принципа действия рельсотрона, до конца не устранена, но вместе с тем разработаны инженерные решения, способные до определенной степени нивелировать ее негативные последствия и создать действующие прототипы ЭМ-пушки рельсотронного типа.

В США с начала двухтысячных идут лабораторные испытания 475-мм рельсотроной пушки, разработанной компаниями General Atomics и BAE Systems. Первые залпы из «пушки будущего», как ее уже окрестили в ряде СМИ, показали довольно обнадёживающие результаты. Снаряд массой 23-кг вылетал из ствола со скоростью, превышающей 2200 м/сек, что позволило бы поражать цели на расстоянии до 160 км. Невероятная кинетическая энергия поражающих элементов электромагнитных орудий делает боевые части снарядов, по сути, ненужными, так как сам снаряд при попадании в цель производит разрушения, сравнимые с тактической ядерной боеголовкой.

После доводки опытного образца рельсотрон планировали установить на скоростной корабль JHSV Millinocket. Однако планы эти отложили до 2020 года, так как с установкой ЭМП именно на боевые корабли возник ряд принципиальных сложностей, устранить которые пока не удалось.

Та же судьба постигла и ЭМ-пушку на передовом американском эсминце «Zumwalt». В начале 90-х годов вместо артиллерийской системы 155 калибра на перспективных кораблях типа DD(X) / GG(X) планировалось устанавливать электромагнитную пушку, но потом от этой идеи решили отказаться. В том числе потому, что при стрельбе из ЭМП пришлось бы на время отключать большую часть электроники эсминца, в том числе системы ПВО и ПРО, а также останавливать ход корабля и системы жизнеобеспечения, иначе мощности энергосистемы не хватает для обеспечения стрельбы. К тому же ресурс ЭМ-пушки, которая испытывалась на эсминце, оказался крайне невелик, - всего несколько десятков выстрелов, после чего ствол выходит из строя из-за огромных магнитных и температурных перегрузок. Данную проблему решить пока не удалось. Исследования и испытания, а точнее сказать, «освоение бюджета», по программе разработки электромагнитного оружия для эсминцев типа DD(X) в данный момент продолжаются, но вряд ли ЭМП с теми характеристиками, которые заявлялись на старте данной программы,

Есть ли у электромагнитных пушек будущее? Безусловно. И вместе с тем, не стоит ожидать, что уже завтра ЭМП заменят привычные нам артиллерийские системы. Многие ученые и эксперты в начале 80-х годов ХХ века всерьез заявляли, что не пройдет и 30-ти лет, как лазерное оружие изменит «лицо войны» до неузнаваемости. Но заявленный срок вышел, а мы до сих пор не видим на вооружении армий мира ни бластеров, ни лазерных пушек, ни генераторов силовых полей. Все это пока остается фантастикой и темой для футуристических дискуссий, хотя работы в данном русле ведутся, и по ряду направлений достигнут серьезный прогресс. Но порой между открытием и серийным образцом проходят долгие десятилетия, а бывает и так, что разработка, поначалу казавшаяся необычайно перспективной, в итоге совершенно не оправдывает ожидания, становясь очередной «технологией будущего», так и не ставшей «реальностью». И какая судьба ждет электромагнитное оружие - покажет только время!

На нашем сайте по схемотехнике периодически поднимаются темы, связанные с электронным оружием - пушки Гаусс, глушилки радиочастот и так далее. А что же наша армия, имеющая милиардные бюджеты - как далеко сумели продвинуться военные разработчики на пути создания оружия будущего? Небольшой обзор имеющихся уже сейчас на вооружении образцов мы и рассмотрим далее. Импульсное электромагнитное оружие является реальным, уже проходящим испытания, типом вооружений армии России. Америка и Израиль также проводят успешные разработки в этой области, однако сделали ставку на использование ЭМИ-систем для генерации кинетической энергии боезаряда. У нас же пошли по пути прямого поражающего фактора и создали прототипы сразу нескольких боевых комплексов - для сухопутных войск, ВВС и ВМФ. Сегодня наша «Алабуга», разорвавшись на высоте 300 метров, способна отключить всю электронную аппаратуру в радиусе 3 км и оставить войсковое подразделение без средств связи, управления, наведения огня, при этом превратив всю имеющуюся технику противника в груду бесполезного металлолома. Это ракета, боевым блоком которой является высокочастотный генератор электромагнитного поля большой мощности. Но прежде чем говорить о применении ЭМИ-оружия, следует сказать, ещё что Советская Армия готовилась воевать в условиях применения поражающего фактора ЭМИ. Поэтому вся военная техника разрабатывалась с учётом защиты от этого поражающего фактора. Способы различны - начиная от простейшего экранирования и заземления металлических корпусов аппаратуры и заканчивая применением специальных предохранительных устройств, разрядников и устойчивой к ЭМИ архитектурой аппаратуры. Так что говорить, будто от него нет защиты, тоже не стоит. Да и радиус действия у ЭМИ-боеприпасов не такой большой - плотность его мощности убывает пропорционально квадрату расстояния. Соответственно, убывает и воздействие. Конечно, вблизи точки подрыва защитить технику сложно.

Глушилка электроники

Впервые мир увидел реально действующий прототип электромагнитного оружия на выставке вооружений ЛИМА-2001 в Малайзии. Там был представлен экспортный вариант отечественного комплекса «Ранец-E». Он выполнен на шасси МАЗ-543, имеет массу около 5 тонн, обеспечивает гарантированное поражение электроники наземной цели, летательного аппарата или управляемого боеприпаса на дальностях до 14 километров и нарушения в её работе на расстоянии до 40 км. Несмотря на то, что первенец произвел настоящий фурор в мировых СМИ, спецалисты отметили ряд его недостатков. Во-первых, размер эффективно поражаемой цели не превышает 30 метров в диаметре, а во-вторых, оружие одноразовое - перезарядка занимает более 20 минут, за которые чудо-пушку уже раз 15 подстрелят с воздуха, а работать по целям она может только на открытой местности, без малейших визуальных преград. Возможно по этим причинам американцы и отказались от создания подобного ЭМИ-оружия направленного действия, сконцентрировавшись на лазерных технологиях. Наши оружейники решили испытать судьбу и попытаться «довести до ума» технологию направленного ЭМИ-излучения.

Интересны и другие разработки НИИРП. Исследуя воздействие мощного СВЧ-излучения с земли на воздушные цели, специалисты этих учреждений неожиданно получили локальные плазменные образования, которые получались на пересечении потоков излучения от нескольких источников. При контакте с этими образованиями воздушные цели претерпевали огромные динамические перегрузки и разрушались. Согласованная работа источников СВЧ-излучения, позволяла быстро менять точку фокусировки, то есть производить перенацеливание с огромной скоростью или сопровождать объекты практически любых аэродинамических характеристик. Опыты показали, что воздействие эффективно даже по боевым блокам МБР. По сути, это даже не просто СВЧ-оружие, а боевые плазмоиды. Возможно, именно это подтолкнуло американцев к созданию на Аляске комплекса HAARP (High freguencu Active Auroral Research Program) - научно-исследовательский проект по изучению ионосферы и полярных сияний. Отметим, что тот мирный проект почему-то имеет финансирование агентства DARPA Пентагона.

Электроника на вооружении российской армии

Чтобы понять, какое место занимает тема радиоэлектронной борьбы в военно-технической стратегии российского военного ведомства, достаточно посмотреть Госпрограмму вооружений до 2020 года. Из 21 трлн рублей общего бюджета ГПВ 3,2 трлн (около 15%) планируется направить на разработку и производство систем нападения и защиты, использующих источники электромагнитного излучения. Для сравнения, в бюджете Пентагона, по оценке экспертов, эта доля значительно меньше - до 10%. В общем заметно прибавилась заинтересованность государства в оружии на новых физических принципах. Программы по нему сейчас носят приоритетный характер. А теперь давайте посмотрим на те изделия, которые дошли до серии и поступили на вооружение за последние несколько лет.

Мобильные комплексы радиоэлектронной борьбы «Красуха-4» подавляют спутники-шпионы, наземные радары и авиационные системы АВАКС, полностью закрывает от радиолокационного обнаружения на 300 км, а также может нанести радиолокационное поражение вражеским средствам РЭБ и связи. Работа комплекса основывается на создании мощных помех на основных частотах радаров и прочих радиоизлучающих источников.

Средство радиоэлектронной борьбы морского базирования ТК-25Э обеспечивает эффективную защиту кораблей различного класса. Комплекс предназначен для обеспечения радиоэлектронной защиты объекта от радиоуправляемого оружия воздушного и корабельного базирования путем создания активных помех. Предусмотрено сопряжение комплекса с различными системами защищаемого объекта, такими как навигационный комплекс, радиолокационная станция, автоматизированная система боевого управления. Аппаратура ТК-25Э обеспечивает создание различных видов помех с шириной спектра от 60 до 2000 МГц, а также импульсных дезинформирующих и имитационных помех с использованием копий сигналов. Комплекс способен одновременно анализировать до 256 целей. Оснащение защищаемого объекта комплексом ТК-25Э в несколько раз снижает вероятность его поражения.

Многофункциональный комплекс «Ртуть-БМ» разработан и выпускается на предприятиях КРЭТ с 2011 года и является одной из наиболее современных систем РЭБ. Основное назначение станции - защита живой силы и техники от одиночного и залпового огня артиллерийских боеприпасов, оснащенных радиовзрывателями. Отметим, что радиовзрывателями сейчас оснащены до 80% западных снарядов полевой артиллерии, мин и неуправляемых реактивных снарядов и почти все высокоточные боеприпасы, эти достаточно простые средства позволяют защитить от поражения войска в том числе непосредственно в зоне контакта с противником.

Концерн «Созвездие» производит серию малогабаритных (автономных) передатчиков помех серии РП-377. С их помощью можно глушить сигналы GPS, а в автономном варианте, укомплектованном источниками питания, ещё и расставив передатчики на некоторой площади, ограниченной только количеством передатчиков. Сейчас готовится экспортный вариант более мощной системы подавления GPS и каналов управления оружием. Она уже является системой объектовой и площадной защиты от высокоточных средств поражения. Построена она по модульному принципу, который позволяет варьировать площади и объекты защиты. Из несекретных разработок известны также изделия МНИРТИ - «Снайпер-М» «И-140/64» и «Гигаватт», выполненные на базе автоприцепов. Они используются для отработки средств защиты радиотехнических и цифровых систем военного, специального и гражданского назначения от поражения ЭМИ.

Полезная теория

Элементная база РЭС весьма чувствительна к энергетическим перегрузкам, и поток электромагнитной энергии достаточно высокой плотности способен выжечь полупроводниковые переходы, полностью или частично нарушив их нормальное функционирование. Низкочастотное ЭМО создает электромагнитное импульсное

излучение на частотах ниже 1 МГц, высокочастотное ЭМО воздействует излучением СВЧ-диапазона - как импульсным, так и непрерывным. Низкочастотное ЭМО воздействует на объект через наводки на проводную инфраструктуру, включая телефонные линии, кабели внешнего питания, подачи и съема информации. Высокочастотное ЭМО напрямую проникает в радиоэлектронную аппаратуру объекта через его антенную систему. Помимо воздействия на РЭС противника, высокочастотное ЭМО может также влиять на кожные покровы и внутренние органы человека. При этом в результате их нагрева в организме возможны хромосомные и генетические изменения, активация и дезактивация вирусов, трансформация иммунологических и поведенческих реакций.

Главным техническим средством получения мощных электромагнитных импульсов, составляющих основу низкочастотного ЭМО, является генератор с взрывным сжатием магнитного поля. Другим потенциальным типом источника низкочастотной магнитной энергии высокого уровня может быть магнитодинамический генератор, приводимый в действие с помощью ракетного топлива или взрывчатого вещества. При реализации высокочастотного ЭМО в качестве генератора мощного СВЧ-излучения могут использоваться такие электронные приборы, как широкополосные магнетроны и клистроны, работающие в миллиметровом диапазоне гиротроны, генераторы с виртуальным катодом (виркаторы), использующие сантиметровый диапазон, лазеры на свободных электронах и широкополосные плазменно-лучевые генераторы.

Таким образом в будущем, однозначно победа будет за тем, кто сумеет разработать и внедрить наиболее совершенные радиоэлектронные методы ведения боя. А нам остаётся следиь за разработками специалистов и пытаться если не превзойти, то по крайней мере повторить некоторые простые конструкции в домашних радиолюбительских лабораториях. По материалам сайта expert.ru



Поделитесь с друзьями или сохраните для себя:

Загрузка...