Как образуется сверхновая звезда. Сверхновая

Еще несколько веков назад астрономы заметили, как блеск некоторых звезд в галактике неожиданно увеличивался более чем в тысячу раз. Редкое явление многократного увеличение свечения космического объекта ученые обозначили, как рождение сверхновой звезды. Это в некотором роде космический нонсенс, потому что в этот момент звезда не рождается, а прекращает свое существование.

Вспышка сверхновой звезды - это, по сути, взрыв звезды, сопровождающийся выделением колоссального количества энергии ~10 50 эрг. Яркость свечения сверхновой, которая становится видна в любой точке Вселенной, возрастает течение нескольких суток. При этом каждую секунду выделяется такое количество энергии, которое может выработать Солнце за все время своего существования.

Взрыв сверхновой звезды как следствие эволюции космических объектов

Ученые-астрономы объясняют это явление эволюционными процессами, миллионы лет происходящими со всеми космическими объектами. Чтобы представить себе процесс появления сверхновой, нужно понять строение звезды (рисунок ниже) .

Звезда - это огромный объект, обладающий колоссальной массой и, следовательно, такой же гравитацией. У звезды есть маленькое ядро, окруженное внешней оболочкой из газов, составляющих основную массу звезды. Гравитационные силы давят на оболочку и ядро, сжимая их с такой силой, что газовая оболочка раскаляется и, расширяясь, начинает давить изнутри, компенсируя силу гравитации. Паритет двух сил обусловливает стабильность звезды.

Под действием огромных температур в ядре начинается термоядерная реакция, превращающая водород в гелий. Выделяется еще больше тепла, излучение которого внутри звезды возрастает, но пока еще сдерживается гравитацией. А дальше начинается настоящая космическая алхимия: запасы водорода истощаются, гелий начинает превращаться в углерод, углерод - в кислород, кислород - в магний…Так посредством термоядерной реакции происходит синтез все более тяжелых элементов.

До момента появления железа все реакции идут с выделением тепла, но как только железо начинает перерождаться в следующие за ним элементы, реакция из экзотермической переходит в эндотермическую, то есть тепло перестает выделяться и начинает расходоваться. Баланс сил гравитации и теплового излучения нарушается, ядро сжимается в тысячи раз, и к центру звезды устремляются все внешние слои оболочки. Врезаясь в ядро со скоростью света, они отскакивают обратно, сталкиваясь друг с другом. Происходит взрыв внешних слоев, и вещество, из которого состоит звезда, разлетается со скоростью в несколько тысяч километров в секунду.

Процесс сопровождается такой яркой вспышкой, что ее можно увидеть даже невооруженным глазом, если сверхновая загорелась в ближайшей галактике. Затем свечение начинает угасать, и на месте взрыва образуется…А что же остается после взрыва сверхновой? Существует несколько вариантов развития событий: во-первых, остатком сверхновой может быть ядро из нейтронов, которое ученые называют нейтронной звездой, во-вторых, черная дыра, в-третьих, газовая туманность.

Вспышка сверхновой звезды (обозначается SN) - явление несравненно более крупного масштаба, чем вспышка новой. Когда в одной из звездных систем мы наблюдаем появление сверхновой, блеск этой одной звезды оказывается подчас того же порядка, что интегральный блеск всей звездной системы. Так, вспыхнувшая в 1885 г. близ центра туманности Андромеды звезда достигла блеска , тогда как интегральный блеск туманности равен , т. е. световой поток от сверхновой всего в четыре раза с небольшим уступает потоку от туманности. В двух случаях блеск сверхновой оказывался больше блеска галактики, в которой сверхновая появлялась. Абсолютные звездные величины сверхновых в максимуме близки к что на , т. е. в 600 раз ярче, чем абсолютная звездная величина обычной новой в максимальном блеске. Отдельные сверхновые достигают в максимуме , что в десять миллиардов раз превышает светимость Солнца.

В нашей Галактике за последнее тысячелетие достоверно наблюдались три сверхновые звезды: в 1054 г. (в Тельце), в 1572 г. (в Кассиопее), в 1604 г. (в Змееносце). По-видимому, прошла незамеченной также вспышка сверхновой в Кассиопее около 1670 г., от которой сейчас осталась система разлетающихся газовых волокон и мощное радиоизлучение (Cas А). В некоторых галактиках на протяжении 40 лет вспыхивало три и даже четыре сверхновые (в туманностях NGC 5236 и 6946). В среднем, в каждой галактике вспыхивает одна сверхновая за 200 лет, а у названных двух галактик этот интервал снижается до 8 лет! Международное сотрудничество за четыре года (1957-1961) привело к открытию сорока двух сверхновых. Общее число наблюдавшихся сверхновых превышает в настоящее время 500.

По особенностям изменения блеска сверхновые распадаются на два типа - I и II (рис. 129); возможно, что существует еще III тип, объединяющий сверхновые с наименьшей светимостью.

Сверхновые I типа отличаются быстротечным максимумом (около недели), после чего в течение 20-30 дней блеск падает со скоростью за одни сутки. Затем падение замедляется и далее, вплоть до наступления невидимости звезды, протекает с постоянной скоростью за сутки. Светимость звезды убывает при этом экспоненциально, вдвое за каждые 55 суток. Например, Сверхновая 1054 г. в Тельце достигла такого блеска , что была видна днем в течение почти месяца, а ее видимость невооруженным глазом продолжалась два года. В максимуме блеска абсолютная звездная величина сверхновых I типа достигает в среднем , а амплитуда от максимума до минимального блеска после вспышки .

Сверхновые II типа имеют меньшую светимость: в максимуме , амплитуда неизвестна. Вблизи максимума блеск несколько задерживается, но спустя 100 дней после максимума падает гораздо быстрее, чем у сверхновых I типа, а именно на за 20 дней.

Сверхновые звезды вспыхивают обычно на периферии галактик.

Сверхновые I типа встречаются в галактиках любой формы, а II типа - только в спиральных. Те и другие в спиральных галактиках бывают чаще всего вблизи экваториальной плоскости, предпочтительно в ветвях спиралей, и, вероятно, избегают центр галактики. Скорее всего они принадлежат к плоской составляющей (I типу населения).

Спектры сверхновых I типа ничем не похожи на спектры новых звезд. Их удалось расшифровать лишь после того, как отказались от идеи весьма широких эмиссионных полос, а темные промежутки были восприняты как весьма широкие абсорбционные полосы, сильно смещенные в фиолетовую сторону на величину ДХ, соответствующую скоростям приближения от 5000 до 20 000 км/с.

Рис. 129. Кривые фотографического блеска сверхновых звезд I и II типа. Вверху - изменение блеска двух сверхновых I типа, вспыхнувших в 1937 г. почти одновременно в туманностях IС 4182 и NGC 1003. На оси абсцисс отложены юлианские дни. Внизу - синтетическая кривая блеска трех сверхновых II типа, полученная соответствующим сдвигом индивидуальных кривых блеска вдоль оси звездных величин (ординаты, оставленной неразмеченной). Прерывистая кривая изображает изменение блеска сверхновой I типа. На оси абсцисс отложены дни от произвольного начала

Такими оказываются скорости расширения оболочек сверхновых! Понятно, что до максимума и первое время после максимума спектр сверхновой сходен со спектром сверхгиганта, цветовая температура которого около 10 000 К или выше (ультрафиолетовый избыток около );

вскоре после максимума температура излучения падает до 5-6 тыс. Кельвинов. Но спектр остается богатым линиями ионизованных металлов, прежде всего CaII (как ультрафиолетовый дублет, так и инфракрасный триплет), хорошо представлены линии гелия (HeI) и очень выделяются многочисленные линии азота (NI), а линии водорода идентифицируются с большой неуверенностью. Конечно, в отдельных фазах вспышки в спектре встречаются и эмиссионные линии, однако недолговечные. Очень большая ширина абсорбционных линий объясняется большой дисперсией скоростей в выброшенных газовых оболочках.

Спектры сверхновых II типа сходны со спектрами обыкновенных новых звезд: широкие эмиссионные линии, окаймленные с фиолетовой стороны линиями поглощения, которые имеют ту же ширину, что и эмиссии. Характерно наличие весьма заметных бальмеровских линий водорода, светлых и темных. Большая ширина абсорбционных линий, образующихся в движущейся оболочке, в той ее части, которая лежит между звездой и наблюдателем, свидетельствует как о дисперсии скоростей в оболочке, так и об ее огромных размерах. Температурные изменения у сверхновых II типа сходны с тем, что происходит у I типа, и скорости расширения доходят до 15 000 км/с.

Между типами сверхновых и их расположением в Галактике или частотой встречаемости в галактиках разных типов существует корреляция, хотя и не очень строгая. Сверхновые I типа встречаются предпочтительнее среди звездного населения сферической составляющей и, в частности, в эллиптических галактиках, а сверхновые II типа, наоборот - среди населения диска, в спиральных и редко - неправильных туманностях. Впрочем, все сверхновые, наблюдавшиеся в Большом Магеллановом Облаке, были I типа. Конечный продукт сверхновых в других галактиках, как правило, неизвестен. При амплитуде около сверхновые, наблюдаемые в других галактиках, в минимуме блеска должны быть объектами , т. е. совершенно недоступными наблюдению.

Все эти обстоятельства могут помочь при выяснении, какими могут быть звезды - предвестники сверхновых. Встречаемость сверхновых I типа в эллиптических галактиках с их старым населением позволяет считать и предсверхновые старыми звездами малой массы, израсходовавшими весь водород. Наоборот, у сверхновых II типа, которые появляются главным образом в богатых газом спиральных ветвях, предшественникам требуется для пересечения ветви около лет, так что их возраст около сотни миллионов лет. За это время звезда должна, начав с главной последовательности, покинуть ее при исчерпании водородного горючего в своих недрах. Звезда маломассивная не успеет пройти этот этап, и, следовательно, предвестник сверхновой II типа должен обладать массой не меньше и быть молодой ОВ-звездой вплоть до взрыва.

Правда, указанное выше появление сверхновых I типа в Большом Магеллановом облаке несколько нарушает достоверность описанной картины.

Естественно допустить, что предвестник сверхновой I типа есть белый карлике массой около , лишенный водорода. Но он стал таким потому, что входил в состав двойной системы, в которой более массивный красный гигант отдает свое вещество бурным потоком так, что от него остается, в конце концов, вырожденное ядро - белый карлик углеродно-кислородного состава, а бывший спутник сам становится гигантом и начинает обратно отсылать вещество белому карлику, образуя там Н = Не-оболочку. Масса его растет и тогда, когда приближается к пределу (18.9), а центральная температура его возрастает до 4-10° К, при которой «возгорается» углерод.

У обычной звезды с ростом температуры возрастает давление, которое поддерживает вышележащие слои. Но у вырожденного газа давление зависит только от плотности, оно не будет возрастать с температурой, и вышележащие слои будут падать к центру, а не расширяться, чтобы компенсировать рост температуры. Будет происходить спадание (коллапс) ядра и прилежащих к нему слоев. Спадание идет резко ускоренно, пока возросшая температура не снимет вырождения, и тогда начнется расширение звезды «в тщетных потугах» стабилизироваться, в то время как волна сгорания углерода проносится через нее. Этот процесс длится секунду-две, за это время вещество с массой около одной массы Солнца превращается в , распад которого (с выделением -квантов и позитронов) поддерживает высокую температуру у оболочки, бурно расширяющейся до размеров в десятки а. е. Образуется (с временем полураспада ), от распада которого возникает в количестве около Белый карлик разрушается до конца. Но не видно причин для образования нейтронной звезды. А между тем в остатках вспышки сверхновой мы не находим заметного количества железа, а находим нейтронные звезды (см. дальше). В этих фактах - главная трудность изложенной модели вспышки сверхновой I типа.

Но объяснения механизма вспышки сверхновой II типа встречаются с еще большими затруднениями. По-видимому, ее предшественник не входит в состав двойной системы. При большой массе (более ) он эволюционирует самостоятельно и быстро, переживая одну за другой фазы сгорания Н, Не, С, О до Na и Si и далее до Fe-Ni-ядра. Каждая новая фаза включается при исчерпании предыдущей, когда, потеряв способность противодействовать гравитации, ядро коллапсирует, температура повышается и следующий этап вступает в действие. Если дело дойдет до фазы Fe-Ni, источник энергии пропадет, так как железное ядро разрушается под воздействием высокоэнергичных фотонов на множество -частиц, и этот процесс эндотермичен. Он помогает коллапсу. И уже нет больше энергии, способной остановить коллапсирующую оболочку.

А у ядра есть возможность перейти в состояние черной дыры (см. с. 289) через стадию нейтронной звезды посредством реакции .

Дальнейшее развитие явлений становится очень неясным. Предложено много вариантов, но в них не содержится объяснения того, как при коллапсе ядра оболочка выбрасывается наружу.

Что же до описательной стороны дела, то при массе оболочки в и скорости выбрасывания около 2000 км/с, затраченная на это энергия достигает , а излучение в течение вспышки (в основном за 70 суток) уносит с собой .

Мы еще раз вернемся к рассмотрению процесса вспышки сверхновой, но уже с помощью изучения остатков вспышек (см. § 28).

Сверхновые звёзды - одно из самых грандиозных космических явлений. Коротко говоря, сверхновая - это настоящий взрыв звезды, когда большая часть её массы (а иногда и вся) разлетается со скоростью до 10 000 км/с, а остаток сжимается (коллапсирует) в сверхплотную нейтронную звезду или в чёрную дыру. Сверхновые играют важную роль в эволюции звёзд. Они являются финалом жизни звёзд массой более 8-10 солнечных, рождая нейтронные звёзды и чёрные дыры и обогащая межзвёздную среду тяжёлыми химическими элементами. Все элементы тяжелее железа образовались в результате взаимодействия ядер более лёгких элементов и элементарных частиц при взрывах массивных звёзд. Не здесь ли кроется разгадка извечной тяги человечества к звёздам? Ведь в мельчайшей клеточке живой материи есть атомы железа, синтезированные при гибели какой-нибудь массивной звезды. И в этом смысле люди сродни снеговику из сказки Андерсена: он испытывал странную любовь к жаркой печке, потому что каркасом ему послужила кочерга...

По наблюдаемым характеристикам сверхновые принято разделять на две большие группы - сверхновые 1-го и 2-го типа. В спектрах сверхновых 1-го типа нет линий водорода; зависимость их блеска от времени (так называемая кривая блеска) примерно одинакова у всех звёзд, как и светимость в максимуме блеска. Сверхновые 2-го типа, напротив, имеют богатый водородными линиями оптический спектр, формы их кривых блеска весьма разнообразны; блеск в максимуме сильно различается у разных сверхновых.

Учёные заметили, что в эллиптических галактиках (т. е. галактиках без спиральной структуры, с очень низким темпом звездообразования, состоящих в основном из маломассивных красных звёзд) вспыхивают только сверхновые 1-го типа. В спиральных же галактиках, к числу которых принадлежит и наша Галактика - Млечный Путь, встречаются оба типа сверхновых. При этом представители 2-го типа концентрируются к спиральным рукавам, где идёт активный процесс звездообразования и много молодых массивных звезд. Эти особенности наводят на мысль о различной природе двух типов сверхновых.

Сейчас надёжно установлено, что при взрыве любой сверхновой освобождается огромное количество энергии - порядка 10 46 Дж! Основная энергия взрыва уносится не фотонами, а нейтрино - быстрыми частицами с очень малой или вообще нулевой массой покоя. Нейтрино чрезвычайно слабо взаимодействуют с веществом, и для них недра звезды вполне прозрачны.

Законченной теории взрыва сверхновых с формированием компактного остатка и сбросом внешней оболочки пока не создано ввиду крайней сложности учёта всех протекающих при этом физических процессов. Однако все данные говорят о том, что сверхновые 2-го типа вспыхивают в результате коллапса ядер массивных звёзд. На разных этапах жизни звезды в ядре происходили термоядерные реакции, при которых сначала водород превращался в гелий, затем гелий в углерод и так далее до образования элементов «железного пика» - железа, кобальта и никеля. Атомные ядра этих элементов имеют максимальную энергию связи в расчёте на одну частицу. Ясно, что присоединение новых частиц к атомному ядру, например, железа будет требовать значительных затрат энергии, а потому термоядерное горение и «останавливается» на элементах железного пика.

Что же заставляет центральные части звезды терять устойчивость и коллапсировать, как только железное ядро станет достаточно массивным (около 1,5 массы Солнца)? В настоящее время известны два основных фактора, приводящих к потере устойчивости и коллапсу. Во-первых, это «развал» ядер железа на 13 альфа-частиц (ядер гелия) с поглощением фотонов - так называемая фотодиссоциация железа. Во-вторых, нейтронизация вещества - захват электронов протонами с образованием нейтронов. Оба процесса становятся возможными при больших плотностях (свыше 1 т/см 3), устанавливающихся в центре звёзды в конце эволюции, и оба они эффективно снижают «упругость» вещества, которая фактически и противостоит сдавливающему действию сил тяготения. Как следствие, ядро теряет устойчивость и сжимается. При этом в ходе нейтронизации вещества выделяется большое количество нейтрино, уносящих основную энергию, запасённую в коллапсирующем ядре.

В отличие от процесса катастрофического коллапса ядра, теоретически разработанного достаточно детально, сброс оболочки звезды (собственно взрыв) не так-то просто объяснить. Скорее всего, существенную роль в этом процессе играют нейтрино

Как свидетельствуют компьютерные расчёты, плотность вблизи ядра настолько высока, что даже слабо взаимодействующие с веществом нейтрино оказываются на какое-то время «запертыми» внешними слоями звезды. Но гравитационные силы притягивают оболочку к ядру, и складывается ситуация, похожая на ту, которая возникает при попытке налить более плотную жидкость, например воду, поверх менее плотной, скажем керосина или масла. (Из опыта хорошо известно, что лёгкая жидкость стремится «всплыть» из-под тяжёлой - здесь проявляется так называемая неустойчивость Рэлея-Тэйлора.) Этот механизм вызывает гигантские конвективные движения, и когда в конце концов импульс нейтрино передаётся внешней оболочке, она сбрасывается в окружающее пространство.

Возможно, именно нейтринные конвективные движения приводят к нарушению сферической симметрии взрыва сверхновой. Иными словами, появляется направление, вдоль которого преимущественно выбрасывается вещество, и тогда образующийся остаток получает импульс отдачи и начинает двигаться в пространстве по инерции со скоростью до 1000 км/с. Столь большие пространственные скорости отмечены у молодых нейтронных звёзд - радиопульсаров.

Описанная схематическая картина взрыва сверхновой 2-го типа позволяет понять основные наблюдательные особенности этого явления. А теоретические предсказания, основанные на данной модели (особенно касающиеся полной энергии и спектра нейтринной вспышки), оказались в полном согласии с зарегистрированным 23 февраля 1987 г. нейтринным импульсом, пришедшим от сверхновой в Большом Магеллановом Облаке.

Теперь несколько слов о сверхновых 1-го типа. Отсутствие свечения водорода в их спектрах говорит о том, что взрыв происходит в звёздах, лишённых водородной оболочки. Как сейчас полагают, это может быть взрыв белого карлика или результат коллапса звезды типа Вольфа -Райе (фактически это ядра массивных звёзд, богатые гелием, углеродом и кислородом).

Как может взорваться белый карлик? Ведь в этой очень плотной звезде не идут ядерные реакции, а силам гравитации противодействует давление плотного газа, состоящего из электронов и ионов (так называемый вырожденный электронный газ). Причина здесь та же, что и при коллапсе ядер массивных звёзд, - уменьшение упругости вещества звезды при повышении её плотности. Это опять-таки связано с «вдавливанием» электронов в протоны с образованием нейтронов, а также с некоторыми релятивистскими эффектами.

Почему же повышается плотность белого карлика? Это невозможно, если он одиночный. Но если белый карлик входит в состав достаточно тесной двойной системы, то под действием гравитационных сил газ с соседней звезды способен перетекать на белый карлик (так в случае новой звезды). При этом масса и плотность его будут постепенно возрастать, что в конечном счёте приведёт к коллапсу и взрыву.

Другой возможный вариант более экзотичен, но не менее реален – это столкновение двух белых карликов. Как такое может быть, ведь вероятность столкнуться двум белым карликам в пространстве ничтожна, поскольку ничтожно число звёзд в единице объёма – от силы несколько звёзд в 100 пк3. И здесь (в который раз!) «виноваты» двойные звёзды, но теперь уже состоящие из двух белых карликов.

Как следует из общей теории относительности Эйнштейна, любые две массы, обращающиеся по орбите вокруг друг друга, рано или поздно должны столкнуться из-за постоянного, хотя и весьма незначительного, уноса энергии из такой системы волнами тяготения - гравитационными волнами. Например, Земля и Солнце, живи последнее бесконечно долго, столкнулись бы вследствие этого эффекта, правда через колоссальное время, на много порядков превосходящее возраст Вселенной. Подсчитано, что в случае тесных двойных систем с массами звёзд около солнечной (2 10 30 кг) их слияние должно произойти за время меньше возраста Вселенной – примерно за 10 млрд. лет. Как показывают оценки, в типичной галактике такие события случаются раз в несколько сот лет. Гигантской энергии, освобождаемой при этом катастрофическом процессе вполне достаточно для объяснения явления сверхновой.

Кстати, примерное равенство масс белых карликов делает их слияния «похожими» друг на друга, а значит, сверхновые 1-го типа по своим характеристикам должны выглядеть одинаково не зависимо от того, когда и в какой галактике произошла вспышка. Поэтому видимая яркость сверхновых отражает расстояния до галактик, в которых они наблюдаются. Это свойство сверхновых 1-го типа в настоящее время используемся учёными для получения независимой оценки важнейшего космологического параметра - постоянной Хаббла, которая служит количественной мерой скорости расширения Вселенной. Мы рассказали лишь о наиболее мощных взрывах звёзд, происходящих во Вселенной и наблюдаемых в оптическом диапазоне. Поскольку в случае сверхновых звёзд основная энергия взрыва уносится нейтрино, а не светом, исследование неба методами нейтринной астрономии имеет интереснейшие перспективы. Оно позволит в будущем «заглянуть» в самое «пекло» сверхновой, скрытое огромными толщами непрозрачного для света вещества. Ещё более удивительные открытия сулит гравитационно-волновая астрономия, которая в недалёком будущем поведает нам о грандиозных явлениях слияния двойных белых карликов, нейтронных звёзд и чёрных дыр.


Сверхновая

Сверхно́вые звёзды - звёзды, заканчивающие свою эволюцию в катастрофическом взрывном процессе.

Термином «сверхновые» были названы звёзды , которые вспыхивали гораздо (на порядки) сильнее так называемых «новых звёзд» . На самом деле, ни те, ни другие физически новыми не являются, всегда вспыхивают уже существующие звёзды. Но в нескольких исторических случаях вспыхивали те звёзды, которые ранее были на небе практически или полностью не видны, что и создавало эффект появления новой звезды. Тип сверхновой определяется по наличию в спектре вспышки линий водорода. Если он есть, значит сверхновая II типа, если нет - то I типа.

Физика сверхновых звёзд

Сверхновые II типа

По современным представлениям, термоядерный синтез приводит со временем к обогащению состава внутренних областей звезды тяжёлыми элементами. В процессе термоядерного синтеза и образования тяжёлых элементов звезда сжимается, а температура в её центре растёт. (Эффект отрицательной теплоёмкости гравитирующего невырожденного вещества.) Если масса ядра звезды достаточно велика (от 1,2 до 1,5 масс Солнца), то процесс термоядерного синтеза доходит до логического завершения с образованием ядер железа и никеля . Внутри кремниевой оболочки начинает формироваться железное ядро. Такое ядро вырастает за сутки и коллапсирует менее, чем за 1 секунду, как только достигнет чандрасекаровского предела . Для ядра этот предел составляет от 1,2 до 1,5 массы Солнца. Вещество падает внутрь звезды, причём отталкивание электронов не может остановить падения. Центральное ядро сжимается все сильнее, и в некоторый момент из-за давления в нём начинают идти реакции нейтронизации - протоны начинают поглощать электроны , превращаясь в нейтроны . Это вызывает быструю потерю энергии, уносимой образующимися нейтрино (т.н. нейтринное охлаждение). Вещество продолжает разгоняться, падать и сжиматься до тех пор, пока не начинает сказываться отталкивание между нуклонами атомного ядра (протонами, нейтронами). Строго говоря, сжатие происходит даже более этого предела: падающее вещество по инерции превосходит точку равновесия из-за упругости нуклонов на 50% ("максимальное стискивание"). Процесс коллапса центрального ядра настолько быстр, что вокруг него образуется волна разрежения. Тогда вслед за ядром к центру звезды устремляется и оболочка. После этого "сжатый резиновый мяч отдаёт назад", и ударная волна выходит во внешние слои звезды со скоростью от 30000 до 50000 км/с. Внешние части звезды разлетаются во все стороны, а в центре взорвавшейся области остаётся компактная нейтронная звезда или чёрная дыра . Это явление называется взрывом сверхновой II типа. Взрывы эти различны по мощности и другим параметрам, т.к. взрываются звёзды различной массы и различного химического состава. Есть данные, что при взрыве сверхновой II типа энергии выделяется не многим больше, чем при взрыве I типа, т.к. пропорциональная часть энергии поглощается оболочкой, но, возможно, что это не всегда так.

В описанном сценарии имеется ряд неясностей. В ходе астрономических наблюдений установлено, что массивные звёзды действительно взрываются, в результате чего образуются расширяющиеся туманности, а в центре остаётся быстро вращающаяся нейтронная звезда, излучающая регулярные импульсы радиоволн (пульсар). Но теория показывает, что идущая наружу ударная волна должна расщеплять атомы на нуклоны (протоны, нейтроны). На это должна тратиться энергия, в результате чего ударная волна должна погаснуть. Но почему-то этого не происходит: ударная волна за несколько секунд достигает поверхности ядра, далее - поверхности звезды и сдувает вещество. Рассматриваются несколько гипотез для разных масс, но они не кажутся убедительными. Возможно, в состоянии "максимального стискивания" или в ходе взаимодействия ударной волны с продолжающим падать веществом в силу вступают какие-то принципиально новые и неизвестные нам физические законы. Кроме того, при взрыве сверхновой с образованием чёрной дыры возникают следующие вопросы: почему вещество после взрыва не полностью поглощается чёрной дырой; имеется ли идущая наружу ударная волна и почему она не тормозится и имеется ли что-то аналогичное "максимальному стискиванию"?

Сверхновые типа Ia

Несколько другим выглядит механизм вспышек сверхновых звёзд типа Іа (SN Ia). Это так называемая термоядерная сверхновая, в основе механизма взрыва которой лежит процесс термоядерного синтеза в плотном углеродно -кислородном ядре звезды. Предшественниками SN Ia являются белые карлики с массой, близкой к пределу Чандрасекара . Принято считать, что такие звезды могут образовываться при перетекании вещества от второй компоненты двойной звёздной системы . Это происходит, если вторая звезда системы выходит за пределы своей полости Роша или относится к классу звёзд со сверхинтенсивным звёздным ветром . При увеличении массы белого карлика постепенно увеличивается его плотность и температура. Наконец, при достижении температуры порядка 3×10 8 K, возникают условия для термоядерного поджигания углеродно -кислородной смеси. От центра к внешним слоям начинает распространяться фронт горения, оставляя за собой продукты горения - ядра группы железа . Распространение фронта горения происходит в медленном дефлаграционном режиме и является неустойчивым к различным видам возмущений. Наибольшее значение имеет Релей-Тейлоровская неустойчивость, которая возникает из-за действия архимедовой силы на лёгкие и менее плотные продукты горения, по сравнению с плотной углеродно -кислородной оболочкой. Начинаются интенсивные крупномасштабные конвективные процессы, приводящие к ещё большему усилению термоядерных реакций и выделению необходимой для сброса оболочки сверхновой энергии (~10 51 эрг). Скорость фронта горения увеличивается, возможна турбулизация пламени и образование ударной волны во внешних слоях звезды.

Другие типы сверхновых

Существуют также SN Ib и Ic, предшественниками которых являются массивные звезды в двойных системах , в отличие от SN II, предшественниками которых являются одиночные звезды.

Теория сверхновых

Законченной теории сверхновых звёзд пока не существует. Все предлагаемые модели являются упрощёнными и имеют свободные параметры, которые необходимо настраивать для получения необходимой картины взрыва. В настоящее время в численных моделях невозможно учесть все физические процессы, происходящие в звёздах и имеющие значение для развития вспышки. Законченной теории звёздной эволюции также не существует.

Заметим, что предшественником известной сверхновой SN 1987A , отнесённой ко второму типу, является голубой сверхгигант , а не красный , как предполагалось до 1987 года в моделях SN II. Также, вероятно, в её остатке отсутствует компактный объект типа нейтронной звезды или чёрной дыры, что видно из наблюдений.

Место сверхновых во Вселенной

Согласно многочисленным исследованиям, после рождения Вселенной , она была заполнена только лёгкими веществами - водородом и гелием . Все остальные химические элементы могли образоваться только в процессе горения звёзд. Это означает, что наша планета (и мы с вами) состоим из вещества, образовавшегося в недрах доисторических звезд и выброшенного когда-то во взрывах сверхновых.

По расчётам учёных, каждая сверхновая II типа производит активного изотопа алюминия (26Al) около 0,0001 массы Солнца. Распад этого изотопа создаёт жёсткое излучение, которое длительно наблюдалось, и по его интенсивности рассчитано, что содержание в Галактике этого изотопа - менее трёх солнечных масс. Это означает, что сверхновые II типа должны взрываться в Галактике в среднем два раза в столетие, чего не наблюдается. Вероятно, в последние века многие подобные взрывы не замечались (происходили за облаками космической пыли). Поэтому большинство сверхновых наблюдается в других галактиках . Глубокие обзоры неба на автоматических камерах, соединённых с телескопами, позволяют сейчас астрономам открывать более 300 вспышек в год. В любом случае сверхновой звезде давно пора взрываться...

По одной из гипотез ученых, космическое облако пыли, появившееся в результате вспышки сверхновой, может держатся в космосе около двух или трёх миллиардов лет!

Наблюдения сверхновых звёзд

Для обозначения сверхновых астрономы используют следующую систему: сначала записываются буквы SN (от латинского S uperN ova), затем год открытия, а затем латинскими буквами - порядковый номер сверхновой в году. Например, SN 1997cj обозначает сверхновую звезду, открытую 26 * 3 (c ) + 10 (j ) = 88-ой по счету в 1997 году.

Наиболее известные сверхновые звёзды

  • Сверхновая SN 1604 (Сверхновая Кеплера)
  • Сверхновая G1.9+0.3 (Самая молодая в нашей Галактике)

Исторические сверхновые в нашей Галактике (наблюдавшиеся)

Сверхновая Дата вспышки Созвездие Макс. блеск Расстояние (св. года) Тип вспышки Длительность видимости Остаток Примечания
SN 185 , 7 декабря Центавр -8 3000 Ia ? 8 - 20 месяцев G315.4-2.3 (RCW 86) китайские летописи: наблюдалась рядом с Альфой Центавра.
SN 369 не известно не известно не известно не известно 5 месяцев не известно китайские летописи: положение известно очень плохо. Если она находилась вблизи галактического экватора, весьма вероятно, что это была сверхновая, если же нет, она, скорее всего, была медленной новой.
SN 386 Стрелец +1.5 16,000 II ? 2-4 месяца
SN 393 Скорпион 0 34000 не известно 8 месяцев несколько кандидатур китайские летописи
SN 1006 , 1 мая Волк -7,5 7200 Ia 18 месяцев SNR 1006 швейцарские монахи, арабские учёные и китайские астрономы.
SN 1054 , 4 июля Телец -6 6300 II 21 месяц Крабовидная туманность на Ближнем и Дальнем Востоке (в европейских текстах не значится, не считая туманных намёков в ирландских монастырских хрониках).
SN 1181 , август Кассиопея -1 8500 не известно 6 месяцев Возможно, 3C58 (G130.7+3.1) труды профессора Парижского университета Александра Некэма, китайские и японские тексты.
SN 1572 , 6 ноября Кассиопея -4 7500 Ia 16 месяцев Остаток сверхновой Тихо Это событие зафиксировано во многих европейских источниках, в том числе и в записях молодого Тихо Браге . Правда, он заметил вспыхнувшую звезду лишь 11 ноября , но зато следил за ней целых полтора года и написал книгу "De Nova Stella" ("О новой звезде") - первый астрономический труд на эту тему.
SN 1604 , 9 октября Змееносец -2.5 20000 Ia 18 месяцев Остаток сверхновой Кеплера С 17 октября её стал изучать Иоганн Кеплер , который, изложил свои наблюдения в отдельной книге.
SN 1680 , 16 августа Кассиопея +6 10000 IIb не известно (не более недели) Остаток Сверхновой Кассиопея А замечена Флэмстидом, занес в свой каталог звезду, как 3 Cas.

См. также

Ссылки

  • Псковский Ю. П. Новые и сверхновые звёзды - книга о новых и сверхновых звездах.
  • Цветков Д. Ю. Сверхновые Звезды - современный обзор сверхновых звезд.
  • Алексей Левин Космические Бомбы - статья в журнале "Популярная Механика"
  • Список всех наблюдавшихся вспышек сверхновых звезд - List of Supernovae, IAU
  • Students for the Exploration and Development of Space -

СВЕРХНОВАЯ ЗВЕЗДА, взрыв, которым ознаменована смерть звезды. Иногда вспышка сверхновой превышает по яркости галактику, в которой она произошла.

Сверхновые делят на два основных типа. Тип I отличается дефицитом водорода в оптическом спектре; поэтому считают, что это взрыв белого карлика – звезды, по массе близкой к Солнцу, но меньшей по размеру и более плотной. В составе белого карлика почти нет водорода, поскольку это конечный продукт эволюции нормальной звезды. В 1930-х годах С.Чандрасекар показал, что масса белого карлика не может быть выше определенного предела. Если он находится в двойной системе с нормальной звездой, то ее вещество может перетекать на поверхность белого карлика. Когда его масса превысит предел Чандрасекара, белый карлик коллапсирует (сжимается), нагревается и взрывается. См. также ЗВЕЗДЫ.

Сверхновая II типа вспыхнула 23 февраля 1987 в соседней с нами галактике Большое Магелланово Облако. Ей дали имя Яна Шелтона, первым заметившего вспышку сверхновой с помощью телескопа, а затем и невооруженным глазом. (Последнее подобное открытие принадлежит Кеплеру, увидевшему вспышку сверхновой в нашей Галактике в 1604, незадолго до изобретения телескопа.) Одновременно с оптической вспышкой сверхновой 1987 специальные детекторы в Японии и в шт. Огайо (США) зарегистрировали поток нейтрино – элементарных частиц, рождающихся при очень высоких температурах в процессе коллапса ядра звезды и легко проникающих сквозь ее оболочку. Хотя поток нейтрино был испущен звездой вместе с оптической вспышкой примерно 150 тыс. лет назад, он достиг Земли практически одновременно с фотонами, доказав тем самым, что нейтрино не обладает массой и движется со скоростью света. Эти наблюдения подтвердили также предположение, что около 10% массы коллапсирующего ядра звезды излучается в виде нейтрино, когда само ядро сжимается в нейтронную звезду. У очень массивных звезд при вспышке сверхновой ядра сжимаются до еще больших плотностей и, вероятно, превращаются в черные дыры, но сброс внешних слоев звезды все же происходит. См . также ЧЕРНАЯ ДЫРА.

В нашей Галактике Крабовидная туманность является остатком взрыва сверхновой, который наблюдали китайские ученые в 1054. Известный астроном Т.Браге также наблюдал в 1572 сверхновую, вспыхнувшую в нашей Галактике. Хотя сверхновая Шелтона стала первой близкой сверхновой, открытой после Кеплера, сотни сверхновых в других, более далеких галактиках были замечены при помощи телескопов за последние 100 лет.

В остатках взрыва сверхновой можно найти углерод, кислород, железо и более тяжелые элементы. Следовательно, эти взрывы играют важную роль в нуклеосинтезе – процессе образования химических элементов. Возможно, что 5 млрд. лет назад рождению Солнечной системы тоже предшествовал взрыв сверхновой, в результате которого возникли многие элементы, вошедшие в состав Солнца и планет. НУКЛЕОСИНТЕЗ.



Поделитесь с друзьями или сохраните для себя:

Загрузка...