Опасности атмосферные. Опасности атмосферные К числу опасных атмосферных явлений относятся

Газовая среда вокруг Земли, вращающаяся вместе с нею, называется атмосферой.

Состав ее у поверхности Земли: 78,1% азота, 21% кислорода, 0,9% аргона, в незначительных долях процента углекислый газ, водород, гелий, неон и др. газы. В нижних 20 км содержится водяной пар (3% в тропиках, 2 х 10-5% в Антарктиде). На высоте 20-25 км расположен слой озона, который предохраняет живые организмы на Земле от вредного коротковолнового излучения. Выше 100 км молекулы газов разлагаются на атомы и ионы, образуя ионосферу.

В зависимости от распределения температуры атмосферу подразделяют на тропосферу, стратосферу, мезосферу, термосферу, экзосферу.

Неравномерность нагревания способствует общей циркуляции атмосферы, которая влияет на погоду и климат Земли. Сила ветра у земной поверхности оценивается по шкале Бофорта.

Атмосферное давление распределяется неравномерно, что приводит к движению воздуха относительно Земли от высокого давления к низкому. Это движение называется ветром. Область пониженного давления в атмосфере с минимумом в центре называется циклоном.

Циклон в поперечнике достигает нескольких тысяч километров. В Северном полушарии ветры в циклоне дуют против часовой стрелки, а в Южном - по часовой. Погода при циклоне преобладает пасмурная, с сильными ветрами.

Антициклон - это область повышенного давления в атмосфере с максимумом в центре. Поперечник антициклона составляет несколько тысяч километров. Антициклон характеризуется системой ветров, дующих по часовой стрелке в Северном полушарии и против - в Южном, малооблачной и сухой погодой и слабыми ветрами.

В атмосфере имеют место следующие электрические явления: ионизация воздуха, электрическое поле атмосферы, электрические заряды облаков, токи и разряды.

В результате естественных процессов, происходящих в атмосфере, на Земле наблюдаются явления, которые представляют непосредственную опасность или затрудняют функционирование систем человека. К таким атмосферным опасностям относятся туманы, гололёд, молнии, ураганы, бури, смерчи, град, метели, торнадо, ливни и др.

Гололёд - слой плотного льда, образующийся на поверхности земли и на предметах (проводах, конструкциях) при замерзании на них переохлажденных капель тумана или дождя.

Обычно гололёд наблюдается при температурах воздуха от 0 до -3°С, но иногда и более низких. Корка намерзшего льда может достигать толщины нескольких сантиметров. Под действием веса льда могут разрушаться конструкции, обламываться сучья. Гололёд повышает опасность для движения транспорта и людей.

Туман - скопление мелких водяных капель или ледяных кристаллов, или тех и других в приземном слое атмосферы (иногда до высоты в несколько сотен метров), понижающее горизонтальную видимость до 1 км и менее.

В очень плотных туманах видимость может понижаться до нескольких метров. Туманы образуются в результате конденсации или сублимации водяного пара на аэрозольных (жидких или твердых) частицах, содержащихся в воздухе (т. н. ядрах конденсации). Большинство капель тумана имеет радиус 5-15 мкм при положительной температуре воздуха и 2-5 мкм при отрицательной температуре. Количество капель в 1 см3 воздуха колеблется от 50-100 в слабых туманах и до 500-600 в плотных. Туманы по их физическому генезису подразделяются на туманы охлаждения и туманы испарения.

По синоптическим условиям образования различают туманы внутримассовые, формирующиеся в однородных воздушных массах, и туманы фронтальные, появление которых связано с фронтами атмосферными. Преобладают туманы внутримассовые.

В большинстве случаев это туманы охлаждения, причем их делят на радиационные и адвективные. Радиационные туманы образуются над сушей при понижении температуры вследствие радиационного охлаждения земной поверхности, а от нее и воздуха. Наиболее часто они образуются в антициклонах. Адвективные туманы образуются вследствие охлаждения теплого влажного воздуха при его движении над более холодной поверхностью суши или воды. Адвективные туманы развиваются как над сушей, так и над морем, чаще всего в теплых секторах циклонов. Адвективные туманы устойчивее, чем радиационные.

Фронтальные туманы образуются вблизи атмосферных фронтов и перемещаются вместе с ними. Туманы препятствуют нормальной работе всех видов транспорта. Прогноз туманов имеет важное значение в безопасности.

Град - вид атмосферных осадков, состоящих из сферических частиц или кусочков льда (градин) размером от 5 до 55 мм, встречаются градины размером 130 мм и массой около 1 кг. Плотность градин 0,5-0,9 г/см3. В 1 мин на 1 м2 падает 500-1000 градин. Продолжительность выпадения града обычно 5-10 мин, очень редко- до 1 ч.

Разработаны радиологические методы определения градоносности и градоопасности облаков и созданы оперативные службы борьбы с градом. Борьба с градом основана на принципе введения с помощью ракет или. снарядов в облако реагента (обычно йодистого свинца или йодистого серебра), способствующего замораживанию переохлажденных капель. В результате появляется огромное количество искусственных центров кристаллизации. Поэтому градины получаются меньших размеров и они успевают растаять еще до падения на землю.

Молнии

Молния - это гигантский электрический искровой разряд в атмосфере, проявляющийся обычно яркой вспышкой света и сопровождающим ее громом.

Гром - звук в атмосфере, сопровождающий разряд молнии. Вызывается колебаниями воздуха под влиянием мгновенного повышения давления на пути молнии.

Наиболее часто молнии возникают в кучево-дождевых облаках. В раскрытие природы молнии внесли вклад американский физик Б. Франклин (1706-1790), русские ученые М. В. Ломоносов (1711-1765) и Г. Рихман(1711-1753), погибший от удара молнии при исследованиях атмосферного электричества.

Молнии делятся на внутриоблачные, т. е. проходящие в самих грозовых облаках, и наземные, т. е. ударяющие в землю. Процесс развития наземной молнии состоит из нескольких стадий.

На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с атомами воздуха, ионизируют их. Таким образом возникают электронные лавины, переходящие в нити электрических разрядов - стримеры, представляющие собой хорошо проводящие каналы, которые, соединяясь, дают начало яркому термоионизированному каналу с высокой проводимостью - ступенчатому лидеру. Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью 5 х 107 м/с, после чего его движение приостанавливается на несколько десятков мксек, а свечение сильно ослабевает. В последующей стадии лидер снова продвигается на несколько десятков метров, яркое свечение при этом охватывает все пройденные ступени. Затем снова следует остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 2 х 105 м/сек. По мере продвижения лидера к земле напряженность поля на его конце усиливается и под его действием из выступающих на поверхности земли предметов выбрасывается ответный стример, соединяющийся с лидером. На этом явлении основано создание молниеотвода. В заключительной стадии по ионизированному лидером каналу следует обратный, или главный разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, сильной яркостью и большой скоростью продвижения 1О7 1О8 м/с. Температура канала при главном разряде может превышать 25000°С, длина канала молнии 1-10 км, диаметр - несколько сантиметров. Такие молнии называются затяжными. Они наиболее часто бывают причиной пожаров. Обычно молния состоит из нескольких повторных разрядов, общая длительность которых может превышать 1с. Внутриоблачные молнии включают в себя только лидерные стадии, их длина от 1 до 150 км. Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы. Эти обстоятельства учитываются при устройстве молниеотвода. В отличие от опасных молний, называемых линейными, существуют шаровые молнии, которые нередко образуются вслед за ударом линейной молнии. Молнии, как линейная, так и шаровая, могут быть причиной тяжелых травм и гибели людей. Удары молний могут сопровождаться разрушениями, вызванными её термическими и электродинамическими воздействиями. Наибольшие разрушения вызывают удары молний в наземные объекты при отсутствии хороших токопроводящих путей между местом удара и землей. От электрического пробоя в материале образуются узкие каналы, в которых создается очень высокая температура, и часть материала испаряется со взрывом и последующим воспламенением. Наряду с этим возможно возникновение больших разностей потенциалов между отдельными предметами внутри строения, что может быть причиной поражения людей электрическим током. Весьма опасны прямые удары молний в воздушные линии связи с деревянными опорами, так как при этом могут возникать разряды с проводов и аппаратуры (телефон, выключатели) на землю и другие предметы, что может привести к пожарам и поражению людей электрическим током. Прямые удары молнии в высоковольтные линии электропроводов могут быть причиной коротких замыканий. Опасно попадание молнии в самолёты. При ударе молнии в дерево могут быть поражены находящиеся вблизи него люди.

Федеральное агентство по образованию Российской Федерации

Дальневосточный государственный технический университет

(ДВПИ имени В.В. Куйбышева)

Институт экономики и управления

по дисциплине: БЖД

на тему: Атмосферные опасности

Выполнил:

Студент группы У-2612

Владивосток 2005

1. Явления, происходящие в атмосфере

Газовая среда вокруг Земли, вращающаяся вместе с нею, называется атмосферой.

Состав ее у поверхности Земли: 78,1% азота, 21% кислорода, 0,9% аргона, в незначительных долях процента углекислый газ, водород, гелий, неон и др. газы. В нижних 20 км содержится водяной пар (3% в тропиках, 2 х 10-5% в Антарктиде). На высоте 20-25 км расположен слой озона, который предохраняет живые организмы на Земле от вредного коротковолнового излучения. Выше 100 км молекулы газов разлагаются на атомы и ионы, образуя ионосферу.

В зависимости от распределения температуры атмосферу подразделяют на тропосферу, стратосферу, мезосферу, термосферу, экзосферу.

Неравномерность нагревания способствует общей циркуляции атмосферы, которая влияет на погоду и климат Земли. Сила ветра у земной поверхности оценивается по шкале Бофорта.

Атмосферное давление распределяется неравномерно, что приводит к движению воздуха относительно Земли от высокого давления к низкому. Это движение называется ветром. Область пониженного давления в атмосфере с минимумом в центре называется циклоном.

Циклон в поперечнике достигает нескольких тысяч километров. В Северном полушарии ветры в циклоне дуют против часовой стрелки, а в Южном - по часовой. Погода при циклоне преобладает пасмурная, с сильными ветрами.

Антициклон - это область повышенного давления в атмосфере с максимумом в центре. Поперечник антициклона составляет несколько тысяч километров. Антициклон характеризуется системой ветров, дующих по часовой стрелке в Северном полушарии и против - в Южном, малооблачной и сухой погодой и слабыми ветрами.

В атмосфере имеют место следующие электрические явления: ионизация воздуха, электрическое поле атмосферы, электрические заряды облаков, токи и разряды.

В результате естественных процессов, происходящих в атмосфере, на Земле наблюдаются явления, которые представляют непосредственную опасность или затрудняют функционирование систем человека. К таким атмосферным опасностям относятся туманы, гололёд, молнии, ураганы, бури, смерчи, град, метели, торнадо, ливни и др.

Гололёд - слой плотного льда, образующийся на поверхности земли и на предметах (проводах, конструкциях) при замерзании на них переохлажденных капель тумана или дождя.

Обычно гололёд наблюдается при температурах воздуха от 0 до -3°С, но иногда и более низких. Корка намерзшего льда может достигать толщины нескольких сантиметров. Под действием веса льда могут разрушаться конструкции, обламываться сучья. Гололёд повышает опасность для движения транспорта и людей.

Туман - скопление мелких водяных капель или ледяных кристаллов, или тех и других в приземном слое атмосферы (иногда до высоты в несколько сотен метров), понижающее горизонтальную видимость до 1 км и менее.

В очень плотных туманах видимость может понижаться до нескольких метров. Туманы образуются в результате конденсации или сублимации водяного пара на аэрозольных (жидких или твердых) частицах, содержащихся в воздухе (т. н. ядрах конденсации). Большинство капель тумана имеет радиус 5-15 мкм при положительной температуре воздуха и 2-5 мкм при отрицательной температуре. Количество капель в 1 см3 воздуха колеблется от 50-100 в слабых туманах и до 500-600 в плотных. Туманы по их физическому генезису подразделяются на туманы охлаждения и туманы испарения.

По синоптическим условиям образования различают туманы внутримассовые, формирующиеся в однородных воздушных массах, и туманы фронтальные, появление которых связано с фронтами атмосферными. Преобладают туманы внутримассовые.

В большинстве случаев это туманы охлаждения, причем их делят на радиационные и адвективные. Радиационные туманы образуются над сушей при понижении температуры вследствие радиационного охлаждения земной поверхности, а от нее и воздуха. Наиболее часто они образуются в антициклонах. Адвективные туманы образуются вследствие охлаждения теплого влажного воздуха при его движении над более холодной поверхностью суши или воды. Адвективные туманы развиваются как над сушей, так и над морем, чаще всего в теплых секторах циклонов. Адвективные туманы устойчивее, чем радиационные.

Фронтальные туманы образуются вблизи атмосферных фронтов и перемещаются вместе с ними. Туманы препятствуют нормальной работе всех видов транспорта. Прогноз туманов имеет важное значение в безопасности.

Град - вид атмосферных осадков, состоящих из сферических частиц или кусочков льда (градин) размером от 5 до 55 мм, встречаются градины размером 130 мм и массой около 1 кг. Плотность градин 0,5-0,9 г/см3. В 1 мин на 1 м2 падает 500-1000 градин. Продолжительность выпадения града обычно 5-10 мин, очень редко- до 1 ч.

Разработаны радиологические методы определения градоносности и градоопасности облаков и созданы оперативные службы борьбы с градом. Борьба с градом основана на принципе введения с помощью ракет или. снарядов в облако реагента (обычно йодистого свинца или йодистого серебра), способствующего замораживанию переохлажденных капель. В результате появляется огромное количество искусственных центров кристаллизации. Поэтому градины получаются меньших размеров и они успевают растаять еще до падения на землю.


2. Молнии

Молния - это гигантский электрический искровой разряд в атмосфере, проявляющийся обычно яркой вспышкой света и сопровождающим ее громом.

Гром - звук в атмосфере, сопровождающий разряд молнии. Вызывается колебаниями воздуха под влиянием мгновенного повышения давления на пути молнии.

Наиболее часто молнии возникают в кучево-дождевых облаках. В раскрытие природы молнии внесли вклад американский физик Б. Франклин (1706-1790), русские ученые М. В. Ломоносов (1711-1765) и Г. Рихман(1711-1753), погибший от удара молнии при исследованиях атмосферного электричества.

Молнии делятся на внутриоблачные, т. е. проходящие в самих грозовых облаках, и наземные, т. е. ударяющие в землю. Процесс развития наземной молнии состоит из нескольких стадий.

На первой стадии в зоне, где электрическое поле достигает критического значения, начинается ударная ионизация, создаваемая вначале свободными электронами, всегда имеющимися в небольшом количестве в воздухе, которые под действием электрического поля приобретают значительные скорости по направлению к земле и, сталкиваясь с атомами воздуха, ионизируют их. Таким образом возникают электронные лавины, переходящие в нити электрических разрядов - стримеры, представляющие собой хорошо проводящие каналы, которые, соединяясь, дают начало яркому термоионизированному каналу с высокой проводимостью - ступенчатому лидеру. Движение лидера к земной поверхности происходит ступенями в несколько десятков метров со скоростью 5 х 107 м/с, после чего его движение приостанавливается на несколько десятков мксек, а свечение сильно ослабевает. В последующей стадии лидер снова продвигается на несколько десятков метров, яркое свечение при этом охватывает все пройденные ступени. Затем снова следует остановка и ослабление свечения. Эти процессы повторяются при движении лидера до поверхности земли со средней скоростью 2 х 105 м/сек. По мере продвижения лидера к земле напряженность поля на его конце усиливается и под его действием из выступающих на поверхности земли предметов выбрасывается ответный стример, соединяющийся с лидером. На этом явлении основано создание молниеотвода. В заключительной стадии по ионизированному лидером каналу следует обратный, или главный разряд молнии, характеризующийся токами от десятков до сотен тысяч ампер, сильной яркостью и большой скоростью продвижения 1О7..1О8 м/с. Температура канала при главном разряде может превышать 25000°С, длина канала молнии 1-10 км, диаметр - несколько сантиметров. Такие молнии называются затяжными. Они наиболее часто бывают причиной пожаров. Обычно молния состоит из нескольких повторных разрядов, общая длительность которых может превышать 1с. Внутриоблачные молнии включают в себя только лидерные стадии, их длина от 1 до 150 км. Вероятность поражения молнией наземного объекта растет по мере увеличения его высоты и с увеличением электропроводности почвы. Эти обстоятельства учитываются при устройстве молниеотвода. В отличие от опасных молний, называемых линейными, существуют шаровые молнии, которые нередко образуются вслед за ударом линейной молнии. Молнии, как линейная, так и шаровая, могут быть причиной тяжелых травм и гибели людей. Удары молний могут сопровождаться разрушениями, вызванными её термическими и электродинамическими воздействиями. Наибольшие разрушения вызывают удары молний в наземные объекты при отсутствии хороших токопроводящих путей между местом удара и землей. От электрического пробоя в материале образуются узкие каналы, в которых создается очень высокая температура, и часть материала испаряется со взрывом и последующим воспламенением. Наряду с этим возможно возникновение больших разностей потенциалов между отдельными предметами внутри строения, что может быть причиной поражения людей электрическим током. Весьма опасны прямые удары молний в воздушные линии связи с деревянными опорами, так как при этом могут возникать разряды с проводов и аппаратуры (телефон, выключатели) на землю и другие предметы, что может привести к пожарам и поражению людей электрическим током. Прямые удары молнии в высоковольтные линии электропроводов могут быть причиной коротких замыканий. Опасно попадание молнии в самолёты. При ударе молнии в дерево могут быть поражены находящиеся вблизи него люди.

3. Защита от молний

Разряды атмосферного электричества способны вызвать взрывы, пожары и разрушения зданий и сооружений, что привело к необходимости разработки специальной системы молниезащиты.

Молниезащита - комплекс защитных устройств, предназначенных для обеспечения безопасности людей, сохранности зданий и сооружений, оборудования и материалов от разрядов молнии.

Молния способна воздействовать на здания и сооружения прямыми ударами (первичное воздействие), которые вызывают непосредственное повреждение и разрушение, и вторичными воздействиями - посредством явлений электростатической и электромагнитной индукции. Высокий потенциал, создаваемый разрядами молнии, может заноситься в здания также по воздушным линиям и различным коммуникациям. Канал главного разряда молнии имеет температуру 20 000°С и выше, вызывающую пожары и взрывы в зданиях и сооружениях.

Здания и сооружения подлежат молниезащите в соответствии с СН 305-77. Выбор защиты зависит от назначения здания или сооружения, интенсивности грозовой деятельности в рассматриваемом районе и ожидаемого числа поражений объекта молнией в год.

Интенсивность грозовой деятельности характеризуется средним числом грозовых часов в году пч или числом грозовых дней в году пд. Определяют ее с помощью соответствующей карты, приведенной в СН 305-77, для конкретного района.

Применяют и более обобщенный показатель - среднее число ударов молнии в год (п) на 1 км2 поверхности земли, который зависит от интенсивности грозовой деятельности.

Таблица 19. Интенсивность грозовой деятельности

Ожидаемое число поражений молнией в год зданий и сооружений N, не оборудованных молниезащитой, определяется по формуле:

N = (S + 6hx) (L+ 6hx) n 10"6,

где Sи L- соответственно ширина и длина защищаемого здания (сооружения), имеющего в плане прямоугольную форму, м; для зданий сложной конфигурации при расчете N в качестве S и Lпринимают ширину и длину наименьшего прямоугольника, в который может быть вписано здание в плане; hx- наибольшая высота здания (сооружения), м; п. - среднегодовое число ударов молнии в 1 км2 земной поверхности в месте расположения здания. Для дымовых труб, водонапорных башен, мачт, деревьев ожидаемое число ударов молнии в год определяют по формуле:

В незащищенную от молнии линию электропередачи протяженностью Lкм со средней высотой подвеса проводов hcpчисло ударов молнии за год составит при допущении, что опасная зона распространяется от оси линии в обе стороны на 3 hcp,


N = 0,42 х К)"3 xLhcpnч

В зависимости от вероятности вызванного молнией пожара или взрыва, исходя из масштабов возможных разрушений или ущерба, нормами установлены три категории устройства молниезащиты.

В зданиях и сооружениях, отнесенных к I категории молниезащиты, длительное время сохраняются и систематически возникают взрывоопасные смеси газов, паров и пыли, перерабатываются или хранятся взрывчатые вещества. Взрывы в таких зданиях, как правило, сопровождаются значительными разрушениями и человеческими жертвами.

В зданиях и сооружениях II категории молниезащиты названные взрывоопасные смеси могут возникнуть только в момент производственной аварии или неисправности технологического оборудования, взрывчатые вещества хранятся в надежной упаковке. Попадание молнии в такие здания, как правило, сопровождается значительно меньшими разрушениями и жертвами.

В зданиях и сооружениях III категории от прямого удара молнии может возникнуть пожар, механические разрушения и поражения людей. К этой категории относятся общественные здания, дымовые трубы, водонапорные башни и др.

Здания и сооружения, относимые по устройству молниезащиты к I категории, должны быть защищены от прямых ударов молнии, электростатической и электромагнитной индукции и заноса высоких потенциалов через наземные и подземные металлические коммуникации по всей территории России.

Здания и сооружения II категории молниезащиты должны быть защищены от прямых ударов молнии, вторичных ее воздействий и заноса высоких потенциалов по коммуникациям только в местностях со средней интенсивностью грозовой деятельности лч = 10.

Здания и сооружения, отнесенные по устройству молниезащиты к III категории, должны быть защищены от прямых ударов молнии и заноса высоких потенциалов через наземные металлические коммуникации, в местностях с грозовой деятельностью 20 ч и, более в год.

Здания защищаются от прямых ударов молнии молниеотводами. Зоной защиты молниеотвода называют часть пространства, примыкающую к молниеотводу, внутри которого здание или сооружение защищено от прямых ударов молнии с определенной степенью надежности. Зона защиты А обладает степенью надежности 99,5% и выше, а зона защиты Б - 95% и выше.

Молниеотводы состоят из молниеприемников (воспринимающих на себя разряд молнии), заземлителей, служащих для отвода тока молнии в землю, и токоотводов, соединяющих молниеприемники с заземлителями.

Молниеотводы могут быть отдельно стоящими или устанавливаться непосредственно на здании или сооружении. По типу молниеприемника их подразделяют на стержневые, тросовые и комбинированные. В зависимости от числа действующих на одном сооружении молниеотводов, их подразделяют на одиночные, двойные и многократные.

Молниеприемники стержневых молниеотводов устраивают из стальных стержней различных размеров и форм сечения. Минимальная площадь сечения молниеприемника - 100 мм2, чему соответствует круглое сечение стержня диаметром 12 мм, полосовая сталь 35 х 3 мм или газовая труба со сплющенным концом.

Молниеприемники тросовых молниеотводов выполняют из стальных многопроволочных тросов сечением не менее 35 мм2 (диаметр 7 мм).

В качестве молниеприемников можно использовать также металлические конструкции защищаемых сооружений - дымовые и другие трубы, дефлекторы (если они не выбрасывают горючие пары и газы), металлическую кровлю и другие металлоконструкции, возвышающиеся над зданием или сооружением.

Токоотводы устраивают сечением 25-35 мм2 из стальной проволоки диаметром не менее 6 мм или стали полосовой, квадратного или иного профиля. В качестве токоотводов можно использовать металлические конструкции защищаемых зданий и сооружений (колонны, фермы, пожарные лестницы, металлические направляющие лифтов и т. д.), кроме предварительно напряженной арматуры железобетонных конструкций. Токоотводы следует прокладывать кратчайшими путями к заземлителям. Соединение токоотводов с молниеприемниками и заземлителями должно обеспечивать непрерывность электрической связи в соединяемых конструкциях, что, как правило, обеспечивается сваркой. Токоотводы нужно располагать на таком расстоянии от входов в здания, чтобы к ним не могли прикасаться люди во избежание поражения током молнии.

Заземлители молниеотводов служат для отвода тока молнии в землю, и от их правильного и качественного устройства зависит эффективная работа молниезащиты.

Конструкция заземлителя принимается в зависимости от требуемого импульсного сопротивления с учетом удельного сопротивления грунта и удобства его укладки в грунте. Для обеспечения безопасности рекомендуется ограждать Заземлители или во время грозы не допускать людей к заземлителям на расстояние менее 5-6 м. Заземлители следует располагать вдали от дорог, тротуаров и т. д.

Ураганы представляют собой явление морское и наибольшие разрушения от них бывают вблизи побережья. Но они могут проникать и далеко на сушу. Ураганы могут сопровождаться сильными дождями, наводнениями, в открытом море образуют волны высотой более 10 м, штормовыми нагонами. Особой силой отличаются тропические ураганы, радиус ветров которых может превышать 300 км (рис. 22).

Ураганы - явление сезонное. Ежегодно на Земле развивается в среднем 70 тропических циклонов. Средняя продолжительность урагана около 9 дней, максимальная - 4 недели.


4. Буря

Буря - это очень сильный ветер, приводящий к большому волнению на море и к разрушениям на суше. Буря может наблюдаться при прохождении циклона, смерча.

Скорость ветра у земной поверхности превышает 20 м/с и может достигать 100 м/с. В метеорологии применяется термин «шторм», а при скорости ветра больше 30 м/с - ураган. Кратковременные усиления ветра до скоростей 20-30 м/с называются шквалами.

5. Смерчи

Смерч - это атмосферный вихрь, возникающий в грозовом облаке и затем распространяющийся в виде темного рукава или хобота по направлению к поверхности суши или моря (рис. 23).

В верхней части смерч имеет воронкообразное расширение, сливающееся с облаками. Когда смерч опускается до земной поверхности, нижняя часть его тоже иногда становится расширенной, напоминающей опрокинутую воронку. Высота смерча может достигать 800-1500 м. Воздух в смерче вращается и одновременно поднимается по спирали вверх, втягивая пыль или поду. Скорость вращения может достигать 330 м/с. В связи с тем, что внутри вихря давление уменьшается, то происходит конденсация водяного пара. При наличии пыли и воды смерч становится видимым.

Диаметр смерча над морем измеряется десятками метров, над сушей - сотнями метров.

Смерч возникает обычно в теплом секторе циклона и движется вместо < циклоном со скоростью 10-20 м/с.

Смерч проходит путь длиной от 1 до 40-60 км. Смерч сопровождается грозой, дождем, градом и, если достигает поверхности земли, почти всегда производит большие разрушения, всасывает в себя воду и предметы, встречающиеся на его пути, поднимает их высоко вверх и переносит на большие расстояния. Предметы в несколько сотен килограммов легко поднимаются смерчем и переносятся на десятки километров. Смерч на море представляет опасность для судов.

Смерчи над сушей называются тромбами, в США их называют торнадо.

Как и ураганы, смерчи опознают со спутников погоды.

Для визуальной оценки силы (скорости) ветра в баллах по его действию на наземные предметы или по волнению на море английский адмирал Ф. Бофорт в 1806 г. разработал условную шкалу, которая после изменений и уточнений в 1963 г. была принята Всемирной метеорологической организацией и широко применяется в синоптической практике (таблица 20).

Таблица. Сила ветра у земной поверхности по шкале Бофорта (на стандартной высоте 10 м над открытой ровной поверхностью)

Баллы Бофорта Словесное определение силы ветра Скорость ветра, м/с Действие ветра
на суше на море
0 Штиль 0-0,2 Штиль. Дым поднимается вертикально Зеркально гладкое море
1 Тихий 0,3-1,6 Направление ветра заметно по относу дыма, но не по флюгеру Рябь, пены на гребнях нет
2 Легкий 1,6-3,3 Движение ветра ощущается лицом, шелестят листья, приводится в движение флюгер Короткие волны, гребни не опрокидываются и кажутся стекловидными
3 Слабый 3,4-5,4 Листья и тонкие ветви деревьев все время колышутся, ветер развевает верхние флаги Короткие, хорошо выраженные волны. Гребни, опрокидываясь, образуют пену, изредка образуются маленькие белые барашки
4 Умеренный 5,5-7,9 Ветер поднимает пыль и бумажки, приводит в движение тонкие ветви деревьев Волны удлиненные, белые барашки видны во многих местах
5 Свежий 8,0-10,7 Качаются тонкие стволы деревьев, на воде появляются волны с гребнями Хорошо развитые в длину, но не очень крупные волны, повсюду видны белые барашки (в отдельных случаях образуются брызги)
6 Сильный 10,8-13,8 Качаются толстые сучья деревьев, гудят телеграфные провода Начинают образовываться крупные волны. Белые пенистые гребни занимают значительные площади (вероятны брызги)
7 Крепкий 13,9-17,1 Качаются стволы деревьев, идти против ветра трудно Волны громоздятся, гребни срываются, пена ложится полосами по ветру
8 Очень крепкий 17,2-20,7 Ветер ломает сучья деревьев, идти против ветра очень трудно Умеренно высокие длинные волны. По краям гребней начинают взлетать брызги. Полосы пены ложатся рядами но направлению ветра
9 Шторм 20,8-24,4 Небольшие повреждения; ветер срывает дымовые колпаки и черепицу Высокие волны. Пена широкими плотными полосами ложится по ветру. Гребни ноли начинают опрокидываться и рассыпаться в брызги, которые ухудшают видимость
10 Сильный шторм 24,5-28,4 Значительные разрушения строений, деревья вырываются с корнем. На суше бывает редко Очень высокие волны с длинными загибающимися вниз гребнями. Образующаяся пена выдувается ветром большими хлопьями в виде густых белых полос. Поверхность моря белая от пены. Сильный грохот волн подобен ударам. Видимость плохая
11 Жестокий шторм 28,5-32,6 Исключительно высокие волны. Суда небольшого и среднего размера временами скрываются из вида. Море все покрыто длинными белыми хлопьями пены, располагающимися по ветру. Края волн повсюду сдуваются в пену. Видимость плохая
12 Ураган 32,7 и более Большие разрушения на значительном пространстве. На суше наблюдается очень редко Воздух наполнен пеной и брызгами. Море все покрыто полосами пены. Очень плохая видимость

6. Влияние атмосферных явлений на транспорт

атмосфера туман молния градоопасность

Транспорт - одна из наиболее зависимых от погоды отраслей народного хозяйства. Особенно это верно для воздушного транспорта, для обеспечения нормальной работы которого требуется самая полная, детальная информация о погоде, как о фактически наблюдающейся, так и об ожидаемой по прогнозу. Специфика требований транспорта к метеорологической информации заключается в масштабности сведений о погоде - маршруты воздушных, морских судов и автомобильных грузоперевозок имеют протяженность, измеряемую многими сотнями и тысячами километров; кроме того, метеорологические условия оказывают решающее влияние не только на экономические показатели работы транспортных средств, но и на безопасность движения; от состояния погоды и качества информации о ней нередко зависят жизнь и здоровье людей.

Для удовлетворения потребностей транспорта в метеорологической информации оказалось необходимым не только создать специальные метеорологические службы (авиационные и морские - повсеместно, а в отдельных странах еще и железнодорожные, автомобильные), но и развить новые отрасли прикладной метеорологии: авиационную и морскую метеорологию.

Многие атмосферные явления представляют опасность для воздушного и морского транспорта, некоторые же метеорологические величины для обеспечения безопасности полетов современных самолетов и плавания современных морских судов должны измеряться с особой точностью. Для нужд авиации и флота понадобились новые сведения, которыми раньше не располагали климатологи. Все это потребовало перестройки уже сложившейся было и успевшей стать <классической> науки климатологии.

Влияние потребностей транспорта на развитие метеорологии за последние полвека стало решающим, оно повлекло за собой и техническое переоснащение метеорологических станций, и использование в метеорологии достижений радиотехники, электроники, телемеханики и т. п., а также совершенствование методов прогноза погоды, внедрение средств и методов предвычисления будущего состояния метеорологических величин (атмосферного давления, ветра, температуры воздуха) и расчета перемещения и эволюции важнейших синоптических объектов, таких, как циклоны и их ложбины с атмосферными фронтами, антициклоны, гребни и т.п.

Это прикладная научная дисциплина, занимающаяся изучением влияния метеорологических факторов на безопасность, регулярность и экономическую эффективность полетов самолётов и вертолетов, а также разрабатывающая теоретические основы и практические приемы их метеорологического обеспечения.

Образно говоря, авиационная метеорология начинается с выбора местоположения аэропорта, определения направления и требуемой длины взлетно-посадочной полосы на аэродроме и последовательно, шаг за шагом, исследует целый комплекс вопросов о состоянии воздушной среды, определяющем условия полетов.

При этом значительное внимание она уделяет и вопросам чисто прикладным, таким, как составление расписания полетов, которое должно оптимальным образом учитывать состояние погоды, или содержание и форма передачи на борт заходящего на посадку самолета информации о характеристиках приземного слоя воздуха, имеющих решающее значение для безопасности приземления самолета.

По данным Международной организации гражданской авиации – ИКАО, за последние 25 лет неблагоприятные метеорологические условия были официально признаны причиной от 6 до 20% авиационных происшествий; кроме того, еще в большем (в полтора раза) количестве случаев они явились косвенной или сопутствующей причиной таких происшествий. Таким образом, примерно в трети всех случаев неблагополучного завершения полетов условия погоды сыграли непосредственную или косвенную роль.

По данным ИКАО, нарушения расписания полетов из-за погоды за последние десять лет в зависимости от времени года и климата района происходят в среднем в 1-5% случаев. Больше половины этих нарушений составляют отмены рейсов из-за неблагоприятных условий погоды в аэропортах вылета или назначения. Статистика последних лет показывает, что на отсутствие требуемых условий погоды в аэропортах назначения приходится до 60% отмен, задержек рейсов и посадок самолетов. Конечно, это средние цифры. Они могут не совпадать с действительной картиной в отдельные месяцы и сезоны, так же как и в отдельных географических районах.

Отмену полетов и возврат купленных пассажирами билетов, изменение маршрутов и возникающие при этом дополнительные расходы, увеличение продолжительности полетов и дополнительные затраты на топливо, расход моторесурсов, оплату услуг и обеспечения полетов, амортизацию оборудования. Так, в США и Великобритании убытки авиакомпаний из-за погоды составляют ежегодно от 2,5 до 5% общего годового дохода. Кроме того, нарушение регулярности полетов приносит авиакомпаниям моральный ущерб, который в конечном итоге также оборачивается уменьшением доходов.

Совершенствование бортового и наземного оборудования систем посадки самолетов позволяет уменьшать так называемые посадочные минимумы и тем самым снижать процент нарушений регулярности вылетов и посадок из-за неблагоприятных метеорологических условий в аэропортах назначения.

Это прежде всего условия так называемых минимумов погоды - дальности видимости, высоты нижней границы облаков, скорости и направления ветра, устанавливаемых для пилотов (в зависимости от их квалификации), воздушных судов (в зависимости от их типа) и аэродромов (в зависимости от их технического оборудования и характеристик местности). При фактических условиях погоды ниже установленных минимумов выполнять полеты из соображений безопасности запрещено. Кроме того, существуют опасные для полетов метеорологические явления, затрудняющие или сильно ограничивающие выполнение полетов (частично они рассмотрены в гл. 4 и 5). Это турбулентность воздуха, вызывающая болтанку самолетов, грозы, град, обледенение самолетов в облаках и осадках, пыльные и песчаные бури, шквалы, смерчи, туман, снежные заряды и метели, а также сильные ливни, резко ухудшающие видимость. Еще следует упомянуть опасность разрядов статического электричества в облаках, снежные заносы, слякоть и гололед на взлетно-посадочной полосе (ВПП) и коварные изменения ветра в приземном слое над аэродромом, называемые вертикальным сдвигом ветра.

Среди большого количества минимумов, устанавливаемых в зависимости от квалификации пилотов, оборудования аэродромов и самолетов, а также географии местности, можно выделить три категории международных минимумов ИКАО по высоте облаков и дальности видимости на аэродроме, в соответствии с которыми разрешается выполнять взлет и посадку самолетам при сложных условиях погоды:

В гражданской авиации нашей страны согласно действующим нормативам сложными считаются следующие метеорологические условия: высота облаков 200 м и менее (при том, что они закрывают не менее половины небосвода) и дальность видимости 2 км и менее. Сложными считаются и такие условия погоды, когда налицо одно или несколько метеорологических явлений, отнесенных к числу опасных для полетов.

Нормативы сложных метеорологических условий не являются стандартными: есть экипажи, которым разрешено выполнение полетов и при значительно худших условиях погоды. В частности, все экипажи, летающие по минимумам ИКАО 1, 2 и 3-й категорий, могут выполнять полеты в сложных метеорологических условиях, если нет опасных метеорологических явлений, непосредственно препятствующих полетам.

В военной авиации ограничения по сложным метеорологическим условиям несколько менее жесткие. Существуют даже так называемые <всепогодные> самолеты, оснащенные для полетов в очень сложных метеорологических условиях. Однако и они имеют ограничения по погоде. Полной независимости полетов от условий погоды практически не существует.

Таким образом, <сложные метеоусловия>-понятие условное, его нормативы связаны с квалификацией летного состава, техническим оснащением самолетов и оборудованием аэродромов.

Сдвиг ветра - это изменение вектора ветра (скорости и направления ветра) на единицу расстояния. Различают вертикальный сдвиг ветра и горизонтальный. Вертикальный сдвиг принято определять как изменение вектора ветра в метрах в секунду на 30 м высоты; в зависимости от направления изменения ветра относительно движения самолета вертикальный сдвиг может быть продольным (попутным - положительным или встречным - отрицательным) или же боковым (левым или правым). Горизонтальный сдвиг ветра измеряется в метрах в секунду на 100 км расстояния. Сдвиг ветра является показателем неустойчивости состояния атмосферы, способной вызывать болтанку самолета, создавать помехи полетам и даже - при некоторых продельных значениях его величины - угрожать безопасности полетов. Вертикальный сдвиг ветра более 4 м/с на 60 м высоты считается опасным для полетов метеорологическим явлением.

Вертикальный сдвиг ветра, кроме того, влияет на точность приземления самолета, выполняющего посадку (рис.58). Если пилот самолета не будет парировать его воздействие работой двигателя или рулями, то при переходе снижающегося самолета через линию сдвига ветра (из верхнего слоя с одним значением ветра в нижний слой с другим его значением), вследствие изменения воздушной скорости самолета и его подъемной силы, самолет сойдет с расчетной траектории снижения (глиссады) и приземлится не в заданной точке взлетно-посадочной полосы а дальше или ближе ее, левее или правее оси ВПП.

Обледенение самолета, то есть отложение льда на его поверхности или на отдельных деталях конструкций на входных отверстиях некоторых приборов, происходит чаще всего во время полета в облаках или дожде, когда переохлажденные капли воды, содержащиеся в облаке или осадках, сталкиваясь с самолетом, замерзают. Реже бывают случаи отложения льда или изморози на поверхности самолета вне облачности и осадков, так сказать в <чистом небе>. Такое явление может иметь место во влажном воздухе, который теплее наружной поверхности самолета.

Для современных самолетов обледенение уже не представляет серьезной опасности, так как они оснащены надежными антиобледенительными средствами (электрообогрев уязвимых мест, механическое скалывание льда и химическая защита поверхностей). Кроме того, лобовые поверхности самолетов, летящих со скоростью более 600 км/ч, сильно нагреваются вследствие торможения и сжатия воздушного потока, обтекающего самолет. Это так называемый кинетический нагрев деталей самолета, из-за которого температура поверхности самолета сохраняется выше точки замерзания воды даже при полете в облачном воздухе со значительной отрицательной температурой.

Однако интенсивное обледенение самолета при вынужденном длительном полете в переохлажденном дожде или в облаках с большой водностью представляет реальную опасность и для современных самолетов. Образование плотной корки льда на фюзеляже и оперении самолета нарушает аэродинамические качества воздушного судна, так как происходит искажение обтекания поверхности самолета воздушным потоком. Это лишает самолет устойчивости полета, снижает его управляемость. Лед на входных отверстиях воздухозаборника двигателя уменьшает тягу последнего, а на приемнике воздушного давления - искажает показания приборов воздушной скорости и т. д. Все это очень опасно при несвоевременном включении антиобледенительных средств или при отказе последних.

По статистике ИКАО, из-за обледенения ежегодно происходит около 7% всех авиационных катастроф, связанных с метеорологическими условиями. Это немногим меньше 1% всех авиакатастроф вообще.

В воздухе никаких участков пространства с вакуумом, или воздушных ям, существовать не может. Но вертикальные порывы в неспокойном, турбулентно возмущенном потоке вызывают броски самолета, создающие впечатление его проваливания в пустоты. Они-то и породили этот термин, в наши дни уже выходящий из употребления. Болтанка самолета, связанная с турбулентностью воздуха, вызывает неприятные ощущения у пассажиров и экипажа самолета, затрудняет полет, а при чрезмерной интенсивности может представлять и опасность для полета.

Мореплавание с древнейших времен тесно связано с погодой. Важнейшими метеорологическими величинами, определяющими условия плавания морских судов, всегда были ветер и обусловленное им состояние морской поверхности - волнение, горизонтальная дальность видимости и явления, ее ухудшающие (туман, осадки), состояние неба - облачность, солнечное сияние, видимость звезд, солнца, луны. Кроме того, моряков интересует температура воздуха и воды, а также наличие морских льдов в высоких широтах, айсбергов, проникающих в акватории умеренных широт. Не последнюю роль для оценки условий плавания играют сведения о таких явлениях, как грозы и кучево-дождевые облака, чреватые опасными для морских судов водяными смерчами и сильными шквалами. В низких широтах мореплавание связано еще и с опасностью, которую несут с собой тропические циклоны - тайфуны, ураганы и т. п.

Погода для моряков - прежде всего фактор, определяющий безопасность плавания, затем - фактор экономический, и, наконец, как и для всех людей,- фактор комфорта, самочувствия и здоровья.

Решающее значение информация о погоде - прогнозы погоды, включающие расчетные данные о ветре, волнении и положении циклонических вихрей, как низкоширотных, так и внетропических,- имеет для морской навигации, то есть для прокладки маршрутов, обеспечивающих наиболее быстрое, экономически эффективное плавание с минимальным риском для судов и грузов и с максимальной безопасностью для пассажиров и экипажей.

Климатические данные, то есть сведения о погоде, накопленные за многие предшествующие годы, служат основой для прокладки морских торговых путей, связывающих между собой континенты. Они также используются при составлении расписания движения пассажирских судов и для планирования морских перевозок. Условия погоды необходимо учитывать и при организации погрузо-разгрузочных работ (когда дело касается грузов, подверженных влиянию атмосферных условий, например чая, леса, фруктов и т. п.), рыбного промысла, туристско-экскурсионного дела, спортивного мореплавания.

Обледенение морских судов - бич мореплавания в высоких широтах, однако при температурах воздуха ниже нуля оно может иметь место и в средних широтах, особенно при сильном ветре и волнении, когда в воздухе много брызг. Главная опасность обледенения заключается в повышении центра тяжести судна из-за нарастания льда на его надводной части. Интенсивное обледенение делает судно неустойчивым и создает реальную угрозу опрокидывания.

Скорость отложения льда при замерзании брызг переохлажденной воды на рыболовных траулерах в Северной Атлантике может достигать 0,54 т/ч, а это значит, что через 8-10 ч плавания в условиях интенсивного обледенения траулер опрокинется. Несколько меньшая скорость отложения льда в снегопадах и переохлажденном тумане: для траулера она соответственно равна 0,19 и 0,22 т/ч.

Наибольшей интенсивности обледенение достигает в тех случаях, когда ранее судно находилось в районе с температурой воздуха значительно ниже 0°С. Примером опасных условий обледенения в умеренных широтах может служить Цемесская бухта на Черном море, где во время сильных северо-восточных ветров, при так называемой новороссийской боре, зимой замерзание водяной ныли и брызг морской воды на корпусах и палубных надстройках судов происходит столь интенсивно, что единственное эффективное средство сберечь судно - уйти в открытое море, за пределы воздействия боры.

По данным специальных исследований, проведенных в 50 и 60-е годы, попутный ветер увеличивает скорость судна примерно на 1%, тогда как встречный ветер способен уменьшить ее в зависимости от размеров судна и его загрузки на 3-13%. Еще более значительно воздействие на судно морских волн, вызываемых ветром: скорость судна является эллиптической функцией высоты и направления волн. На рис. 60 показана эта зависимость. При высоте волны более 4 м морские суда вынуждены замед лять ход или менять курс. В условиях высокого волнения продолжительность плавания, расход топлива и опасность повреждения груза резко увеличиваются, поэтому на основе метеорологической информации маршрут прокладывается в обход таких районов.

Плохая видимость, колебания уровня воды в реках и озерах, замерзание водоемов - все это сказывается как на безопасности, так и на регулярности плавания судов, а также на экономических показателях их эксплуатации. Ранние ледоставы на реках, как и позднее вскрытие рек ото льда, сокращает период навигации. Применение ледокольных средств удлиняет сроки навигации, но удорожает стоимость перевозок.

Ухудшение видимости из-за туманов и осадков, снежные заносы, гололедные явления, ливни, наводнения и сильные ветры затрудняют работу автомобильного и железнодорожного транспорта, не говоря уже о мотоциклах и велосипедах. Открытые виды транспорта более чем в два раза чувствительнее к неблагоприятной погоде, чем закрытые. В дни с туманом и обложными осадками поток автомобилей на дорогах сокращается на 25-50% по сравнению с потоком в ясные дни. Наиболее резко на дорогах в ненастные дни уменьшается количество личных автомобилей. По этой причине трудно установить точную количественную связь между метеорологическими условиями и дорожными происшествиями, хотя такая связь несомненно сущестует. Несмотря на уменьшение потока автомашин в плохую погоду, число аварий при гололеде возрастает на 25% по сравнению с сухой погодой; особенно часты аварии при гололеде на поворотах дороги с плотным движением.

В зимние месяцы в умеренных широтах основные затруднения наземного транспорта связаны со снегом и льдом. Снежные заносы требуют расчистки дорог, осложняющей движение, и установки заградительных щитов на участках дорог, не имеющих снегозащищенных насаждений.

Щит, поставленный вертикально и ориентированный перпендикулярно к потоку воздуха, с которым переносится сьег, (отдает за собой зону турбулентности, то есть неупорядоченного вихревого движения воздуха (рис. 61). В пределах турбулентной зоны вместо переноса снега идет процесс его отложения - растет сугроб, высота которого в пределе совпадает с толщиной зоны турбулентности, а длина - с протяженностью этой зоны, которая, как уста^ новлено опытным путем, примерно равна пятнадцати кратной высоте щита. Сугроб, создающийся за щитом, напоминает но форме рыбу.

Образование на дорогах ледяной корки обусловливается не только режимом температуры, но и влажностью, наличием осадков (в виде переохлажденного дождя или мороси, падающей на ранее сильно выхоложенное покрытие). Поэтому по одной температуре воздуха делать вывод о гололедице на дорогах рискованно, однако температурный режим остается наиболее важным показателем опасности обледенения дорог: минимальная температура поверхности дороги может быть на 3°С ниже минимальной температуры воздуха.

Соль, которую разбрасывают на дорогах и на тротуарах, действительно предотвращает образование ледяной корки^ растапливая снег. Смесь снега с солью остается жидкой не смерзающейся массой при температуре до -8°С, рас-плавление льда солью может быть достигнуто даже при температуре -20°С, хотя процесс таяния будет значительно менее эффективным, чем при температуре, близкой к 0°С. Практически освобождение дорог от снега с помощью соли эффективно при толщине снежного покрова до 5 см.

Однако использование соли для очистки дорог от снега имеет негативную сторону: соль вызывает коррозию автомобилей и загрязняет водоемы хлоридами, а почву вблизи дорог - натрием в избыточной концентрации (см. также 13.10). Поэтому в ряде городов этот способ борьбы с обледенением дорог запрещен.

Колебания температуры воздуха в зимнее время могут вызвать обледенение рельсов и линий связи, а также подвижного состава, когда он стоит на запасных путях; бывают, хотя и сравнительно редко, и случаи обледенения пантографов на электропоездах. Все эти особенности влияния метеорологических условий на работу железнодорожного транспорта требуют использования специальной техники и связаны с дополнительными затратами труда и денежных средств в объеме 1-2% стоимости оперативных эксплуатационных расходов. В целом же железнодорожный транспорт менее других видов транспорта зависит от условий погоды, недаром рекламные проспекты железных дорог часто утверждают, что <железная дорога работает и тогда, когда все другие виды транспорта бездействуют>. Хотя это и преувеличение, но оно не слишком далеко от истины. Впрочем, от стихийных бедствий, вызванных аномалиями.погоды, железные дороги не застрахованы точно так же, как и другие отрасли народного хозяйства: сильные бури, наводнения, оползни, селевые потоки, снежные обвалы разрушают железнодорожные пути, как и автомобильные дороги; гололед, интенсивно отлагаясь на контактных проводах электрических железных дорог, обрывает их так же, как и провода ЛЭП или обычных линий связи. Следует добавить, что увеличение скорости движения поездов до 200-240 км/ч породило угрозу переворачивания поезда под действием ветра.

В холмистой местности для уменьшения снежных заносов устанавливают заградительные щиты, изменяют наклон полотна, что способствует ослаблению приземного вихря, или же сооружают невысокие насыпи. Насыпь не должна быть слишком крутой, иначе создается заметный подветренный вихрь, а это приводит к накоплению снега на подветренной стороне насыпи.


Список используемой литературы

1. Маньков В. Д.: БЖД, ч II, БЭ ЭВТ: учебное пособие для ВВУЗов – СПб: ВИКУ, 2001 г.

2. Косьмин Г. В., Маньков В. Д. Руководство к ГЗ по дисциплине «БЖД», ч. 5. ОБ проведения опасных работ и ЭТ Гостехнадзора в ВС РФ – ВИКУ – 2001 г

3. О. Русак, К. Малаян, Н. Занько. «Безопасность жизнедеятельности» учебное пособие

Урок №18. Тема: Опасные явления в атмосфере. Цели урока : изучение природных стихийных явлений происходящих в атмосфере; развитие умения анализировать, делать выводы, умения работать в группах; воспитание активности, самостоятельности.

Задачи. Расширить представления учащихся об опасных стихийных явлениях, происходящих в атмосфере. Рассмотреть вопрос о причинах данных явлений. Познакомить учащихся с методами борьбы с опасными явлениями в атмосфере. Выработать правила поведения во время стихий атмосферы.

Оборудование. Физическая карта Воронежской области, атласы Воронежской области, рабочие тетради, фотографии стихийных явлений.

Ход урока .

I . Организационный момент .

II . Повторение. Проверка домашнего задания .

а) На доске термины для повторения в группах: атмосфера, амплитуда, атмосферное давление, ветер, погода, климат, прибор для измерения давления, ветра, как вычислить среднюю температуру.

б) Индивидуальный опрос (по карточкам).

Карточка№1.

1) Вычислить амплитуду температуры за октябрь (по календарю)

2) Построить график температуры за сутки:

1ч- -1гр; 6ч- -4гр; 12ч- +3гр; 19ч- 0гр.

Карточка№2.

1) Вычислить амплитуду температуры за январь (по календарю погоды учащегося).

2) Построить график температур за вторую неделю октября (по календарю погоды учащегося).

III . Изучение нового материала.

Вспомните, с какими опасными природными явлениями мы с вами уже познакомились при изучении литосферы и гидросферы (Землетрясения, вулканы, наводнения ).

А сегодня мы с вами познакомимся с опасными явлениями в атмосфере. Земная атмосфера вечно влияет на жизнь и деятельность людей. Мы во многом зависим от её состава и состояния приземного слоя-погоды, от процессов и явлений, которые её сопровождают. Некоторые из них человек использует с пользой для себя как климатические ресурсы. Однако немало среди них и таких, что могут нанести значительный ущерб. Приведите примеры, соответствующие схеме:

А теперь скажите, какие вы знаете опасные явления в атмосфере? (Засуха, суховеи , пыльные бури, сильные морозы, град, гололёд, туман )

Как мы построим свою работу? Перед вами на столах лежат таблицы, которые надо заполнить, когда будете слушать сообщения своих товарищей. Заполняете только первые две колонки, по третьей колонке я хочу услышать от вас, какие методы борьбы вы предложите, а затем заполним и её.

Вид явления Особенности проявления Методы борьбы с опасными атмосферными явлениями
Засуха Длительная сухая погода с высокой температурой воздуха и отсутствием осадков Орошение полей, накопление влаги в почве путём снегозадержания, создание прудов, выведение засухоустойчивых сортов
Пыльная буря Суховеи Сильный продолжительный ветер выдувающий верхний слой почвы. Полезащитные лесные полосы, безотвальная вспашка почвы
Заморозки Понижение температуры воздуха ниже нуля градусов поздней весной и ранней осенью. Дымление путем сжигания горючих материалов и создание паротуманных завес.
Град Вид ливневых осадков в виде частиц льда преимущественно округлой формы. Создана специальная противоградовая служба
Гололёд Корка льда, возникающая на поверхности земли при температуре воздуха ниже нуля. Из капель дождя или тумана. Образуется весной или осенью, может и зимой. На полях разрушают корку льда техникой, дороги посыпают специальной смесью.
Гроза Между облаками и земной поверхностью возникают электрические разряды- молнии, сопровождающиеся громом. Используются громоотводы- металлические стержни.

Мы прослушали сообщения ваших товарищей. Теперь поговорим о мерах борьбы с ними. Ребята высказывают свои мысли о борьбе с этими явлениями и заполняют третью колонку таблицы.

Вывод: Опасные природные явления создают угрозу для жизни человека, сельского хозяйства, эксплуатации ЛЭП, промышленных, гражданских сооружений, телефонной сети. Только в 2010 году ущерб от засух, заморозков, градобития, шквалистых ветров составил по Воронежской области около 400 млн. рублей.

У нас осталась с вами ещё одна нерешённая задача – это выработка правил поведения во время стихийных бедствий в атмосфере.

1. Град: а) Если град застал вас на улице, то постарайтесь выбрать укрытие. В противном случае защитите голову от ударов градин;

б) Не пытайтесь найти укрытие под деревьями, т.к. велик риск не только попадания в них молний;

2. Гололёд : Подготовьте малоскользящую обувь, прикрепите на каблуки металлические набойки или поролон, а на сухую подошву наклейте лейкопластырь или изоляционную ленту, можете натереть подошвы песком (наждачной бумагой). Передвигайтесь осторожно, не торопясь, наступая на всю подошву.

3. Жара : а) Носите светлую воздухонепроницаемую одежду (желательно из хлопка) с головным убором;

б) При тепловом поражении немедленно перейдите в тень, на ветер или примите душ, медленно выпейте много воды. Постарайтесь охладить свое тело, чтобы избежать теплового удара;

4. Гроза . Если вы находитесь в помещении, то следует держаться подальше от окон, электроприборов, а также труб и другой металлической сантехники. Не касайтесь металлических сооружений, проволочных заборов или металлической проволоки для сушки белья. Не приближайтесь к ним. Не держите в руках длинные металлические предметы, например удочки, зонты или клюшки для гольфа. Не звоните по телефону. Перед грозой отключите внешние антенны и выключите из розетки радиоприёмники и телевизоры. Отсоедините модемы и источники питания. Держитесь в стороне от Электроприборов.

IV . Закрепление

Географический диктант

1. Понижение температуры воздуха ниже нуля градусов весной и осенью (заморозок ).

2. Осадки в виде частиц льда (град ).

3. Корка льда, образующаяся при замерзании капель дождя или тумана весной или осенью (гололёд.)

4. Скопление водяных капель в нижнем слое тропосферы (туман).

5. Жаркий, сухой, сильный ветер, длящийся несколько дней (суховей).

6. Длительный период длящаяся сухая погода с высокой температурой воздуха (засуха).

V . Задание на дом. Учить записи в тетради.

Оставьте свой комментарий, спасибо!

Газовая среда вокруг Земли, вращающаяся вместе с ней, называется атмосферой. Ее состав у поверхности Земли: 78,1% азота, 21% кислорода, 0,9% аргона, в незначительных долях процента углекислый газ, водород, гелий, другие газы. В нижних 20 км содержится водяной пар. На высоте 20-25 км расположен слой озона, который предохраняет жи­вые организмы на Земле от вредного коротковолнового (ионизирующего) излучения. Выше 100 км молекулы газов разлагаются на атомы и ионы, образуя ионосферу.

Атмосферное давление распределяется неравномерно, что приво­дит к движению воздуха относительно Земли от высокого давления к низкому. Это движение называется ветром.

Сила ветра у земной поверхности по шкале Бофорта (на стандартной высоте 10 м над открытой ровной поверхностью)

Баллы Бофорта

Словесное определение силы ветра

Скорость ветра, м/с

Действие ветра

Безветрие. Дым поднимается вертикально

Зеркально гладкое море

Направление ветра за­метно по относу дыма, но не по флюгеру

Рябь, пены на гребнях нет

Движение ветра ощуща­ется лицом, шелестят листья, приводится в движение флюгер

Короткие волны, гребни не опрокидываются и кажутся стекловидными

Листья и тонкие ветви деревьев все время ко­лышутся, ветер развевает флаги

Короткие, хорошо выражен­ные волны. Гребни, опроки­дываясь, образуют пену, из­редка образуются маленькие белые барашки

Уме­ренный

Ветер поднимает пыль и листья, приводит в дви­жение тонкие ветви де­ревьев

Волны удлиненные, белые барашки видны во многих местах

Качаются тонкие стволы деревьев, на воде появ­ляются волны с гребнями

Хорошо развитые в длину, но не очень крупные волны, по­всюду видны белые барашки (в отдельных случаях образу­ются брызги)

Силь­ный

Качаются толстые сучья деревьев, «гудят» провода воздушных линий

Начинают образовываться крупные волны. Белые пени­стые гребни занимают значи­тельные площади (вероятны брызги)

Качаются стволы деревь­ев, идти против ветра трудно

Волны громоздятся, гребни срываются, пена ложится по­лосами по ветру

Очень крепкий

Ветер ломает сучья де­ревьев, идти против ветра очень трудно

Умеренно высокие длинные волны. По краям гребней на­чинают взлетать брызги. По­лосы пены ложатся рядами по направлению ветра

Небольшие повреждения; ветер начинает разрушать крыши зданий

Высокие волны. Пена широ­кими плотными полосами ложится по ветру. Гребни волн начинают опрокидываться и рассыпаться в брызги, кото­рые ухудшают видимость

Сильный шторм

Значительные разру­шения строений, дере­вья вырываются с кор­нем. На суше бывает редко

Очень высокие волны с длинны­ми загибающимися вниз гребня­ми. Образующаяся пена выдува­ется ветром большими хлопьями в виде густых белых полос. По­верхность моря белая от пены. Сильный грохот волн подобен ударам. Видимость плохая

Жестокий шторм

Большие разрушения на значительном про­странстве. На суше наблюдается очень редко

Исключительно высокие волны. Суда небольшого и среднего размера временами скрываются из вида. Море все покрыто длин­ными белыми хлопьями пены, располагающимися по ветру. Края волн повсюду сдуваются в пену. Видимость плохая

32,7 и более

Огромные разрушения на значительном про­странстве, деревья вырваны с корнями, растительность уничтожена. На суше наблюдается очень редко

Воздух наполнен пеной и брыз­гами. Море все покрыто полоса­ми пены. Очень плохая види­мость

Область пониженного давления в атмосфере с минимумом в цен­тре называется циклоном . Погода при цикло­не преобладает пасмурная, с сильными ветрами.

Антициклон - это область повышенного давления в атмосфере с максимумом в центре. Антициклон характеризуется малооблачной, сухой погодой и слабыми ветрами. Диаметр циклона и антициклона достигает несколь­ких тысяч километров.

В результате естественных про­цессов, происходящих в атмосфе­ре, на Земле наблюдаются явления, которые представляют непосредст­венную опасность или затрудняют функционирование систем челове­ка. К таким атмосферным опасно­стям относятся бури, ураганы, смерчи, туманы, гололедица, молнии, град и др.

Буря . Это очень сильный ветер, приводящий к большому волне­нию на море и к разрушениям на суше. Буря может наблюдаться при прохождении циклона или смерча. Скорость ветра у земной поверхности во время бури превышает 20 м/с и может достигать 50 м/с (с отдельными порывами до 100 м/с). Кратковременные усиления ветра до скоростей 20-30 м/с называют­ся шквалами. В зависимости от баллов шкалы Бофорта сильная буря на море называется штормом или тайфу­ном , на суше - ураганом.

Ураган. Это циклон, у которого давление в центре очень низкое, а ветры достигают большой и разрушительной силы. Скорость ветра во время урагана достигает 30 м/с и более.

Ураганы представляют собой морское явление, и наибольшие раз­рушения от них бывают вблизи побережья (рис 1). Но ураганы могут прони­кать далеко на сушу и не редко сопровождаются сильными дождя­ми, наводнениями, штормовыми нагонами, в открытом море образуют волны высотой более 10 м. Особой силой отличаются тропические ура­ганы, радиус ветров которых может превышать 300 км. Средняя продолжительность ура­гана около 9 дней, максимальная - 4 недели.

Самый страшный на памяти человечества ураган прошел 12-13 ноября 1970 года над островами в дельте Ганга, Бангладеш. Он унес около миллиона жизней. Осенью 2005 г. ураган «Катрина», налетевший на США, в считан­ные часы разрушил дамбы, защищавшие г. Новый Орлеан, в резуль­тате чего миллионный город оказался под водой. По официальным данным погибло более 1800 человек, эвакуировано было свыше одного мил­лиона жителей.

Смерч . Это атмосферный вихрь, возникающий в грозовом обла­ке и затем распространяющийся в виде темного рукава по направлению к поверхности суши или моря (рис. 2). В верхней части смерч имеет воронкообразное расширение, сливаю­щееся с облаками. Высота смерча может достигать 800-1500 м. Внутри воронки воздух опускается, а снаружи поднимается, быстро вращаясь по спирали, при этом создаётся область сильно разреженного воздуха. Разрежение настолько значительно, что замкнутые наполненные газом предметы, в том числе здания, могут взорваться изнутри из-за разности давлений. Скорость вращения может достигать 330 м/с. Обычно поперечный диаметр воронки смерча в нижнем сечении составляет 300 – 400 м. При прохождении воронки над сушей может достигать 1,5 – 3 км, если смерч касается поверхности воды, эта величина может составлять всего 20 – 30м.

Скорость продвижения смерчей различна, в среднем 40 – 70 км/ч, в редких случаях может достигать 210 км/ч. Смерч проходит путь длиной от 1 до 40 км, иногда более 100 км, сопровождается грозой, дождем, гра­дом. Достигая поверхности земли, почти всегда производит большие разрушения, втягивает в себя воду и предметы, встречающиеся на его пути, поднимает их высоко вверх и перено­сит на десятки километров. Смерчем легко под­нимаются предметы в несколько сотен ки­лограммов, иногда в несколько тонн. В США их называют торнадо, как и ураганы, смерчи опознают со спутников погоды.

Молния - это гигантский электрический искровой разряд в атмо­сфере, проявляющийся обычно яркой вспышкой света и сопровож­дающим ее громом. Молнии делятся на внутриоблачные , то есть проходящие в самых грозовых облаках, и наземные , то есть ударяющие в землю. Процесс развития наземной молнии состоит из нескольких стадий.

На первой стадии (в зоне, где электрическое поле достигает крити­ческого значения) начинается ударная ионизация, создаваемая электронами, которые под действием электрического поля двигаются по направлению к земле и, сталкиваясь с атомами воздуха, ионизируют их. Таким образом, возникают электрон­ные лавины, переходящие в нити электрических разрядов - стри­меры, представляющие собой хорошо проводящие каналы, которые соединяясь, дают начало ступенчатому лидеру молнии . Движение лидера к земной поверхности происходит ступенями в не­сколько десятков метров. По мере продвижения лидера к земле из выступающих на поверхности земли предметов выбрасывается ответ­ный стример, соединяющийся с лидером. На этом явлении основано создание молниеотвода.

Вероятность поражения молнией наземного объ­екта растет по мере увеличения его высоты и с увеличением электро­проводности почвы. Эти обстоятельства учитываются при устройстве молниеотвода.

Молнии могут быть причиной тяжелых травм и гибели людей. Поражение человека молнией часто происходит на открытых пространствах, так как электрический ток идёт по кратчайшему пути «грозовое облако – земля». Удары молний могут сопровождаться разрушениями, вызванными ее термическими и электродинамически­ми воздействиями. Весьма опасны прямые удары молний в воздушные линии связи, так как при этом могут возникать разряды с проводов и аппаратуры, что может привести к пожарам и поражению людей элек­трическим током. Прямые удары молний в высоковольтные линии электропередач могут быть причиной коротких замыканий. При ударе молнии в дерево могут быть поражены находящиеся вблизи него люди.

Опасные явления зимнего периода

Атмосфера Земли оказывает большое влияние на жизнь и деятельность людей. Те явления, которые в ней происходят и наблюдаются на планете, представляют собой или опасность или затрудняют функционирование систем человека. Такими опасными явлениями можно считать туманы, молнии, ураганы, бури, смерчи, град и др. Опасные атмосферные явления могут возникнуть неожиданно, проявиться как стихийные, а значит принести значительный ущерб. Связаны опасные явления с особенностями атмосферной циркуляции, а иногда и с рельефом местности. Для зимнего периода характерны такие опасные явления, как снегопады, метели, морозы, гололедица и др.

Определение 1

Снегопад – интенсивное выпадение снега, приводящее к снижению видимости и затруднению движения транспорта.

Такая чрезвычайная ситуация, как снегопад, по величине наносимого ущерба занимает $4$-$5$ место в целом по миру, но иногда перемещается на $3$-$4$ место. Под действием снеговых нагрузок крыши домов могут ломаться, падают деревья, гибнут плантации и др. Средние снеговые нагрузки из максимальных могут превышать $250$ кг/куб м. Крупные города в результате снегопадов могут быть парализованы за считанные часы. Например, в $1967$ г. в Чикаго выпало $58$ см снега. Жители города его запомнили как «Снежную бурю 67-го» . Сила этого снегопада пришлась по Среднему Западу США и охватила территорию от Мичигана до Индианы. Эта снежная буря унесла с собой жизни $76$ человек.

В $1971$ г. сильный снегопад начался в Канаде , в провинциях Онтарио и Квебек, где за короткий период выпал $61$ см снега. Буря получила название «Восточно-Канадская метель 71-го» и сопровождалась сильным ветром. Видимость на дорогах была нулевая. Очень низкая температура вызвала смерть $20$ человек, и для местных жителей это стало настоящей катастрофой.

Тибет $2008$ г. Из-за большой высоты здесь прохладно и снега выпадает мало, но $2008$ г стал для местных жителей исключением. Мощный снегопад продолжался $36$ часов и завалил некоторые районы снегом, толщиной $180$ см. Средняя его толщина составляла $150$ см. Здания не выдерживали, дороги не функционировали.

Рекордсменом по снегопаду стал американский город Баффало в $1977$ г. По сравнению с окружающими территориями здесь более высокие температуры и меньшее количество выпадавшего зимой снега. Снегопад $1977$ г. был достаточно умеренный, но с очень сильным ветром, скорость которого составляла $70$ км в час. На этот момент в городе уже лежал слой снега. Не самый сильный снежный шторм вызвал страшный мороз, нулевую видимость и метель. После окончания снегопада в городе слой выпавшего снега составлял $5$ метров – это был абсолютный рекорд сезона.

Опасные явления летнего периода

Для летнего периода существуют свои опасные природные явления, связанные с атмосферой – это жара, суховеи, засухи. К ним еще относятся природные пожары, наводнения, смерчи, торнадо, вихри и др.

Определение 2

Смерч – это восходящий вихрь быстровращающегося воздуха с частицами песка, пыли, влаги

Над морем такой вихрь называют смерчем , а над сушей – тромбами . В Северной Америке тромбы получили название торнадо . Это воздушная воронка, свисающая из облака в виде хобота и ниспадающая к земле. Смерчи образуются в разных районах планеты и могут сопровождаться грозами и сильными ливнями. Возникнуть они могут как над сушей, так и над водой.

Рождение смерча связано с низкими кучево-дождевыми облаками, в виде темной воронки опускающейся на землю, но могут появиться и при ясной погоде. Смерчевое облако в поперечнике занимает $5$-$10$ км, иногда бывает и $15$ км. Высота его $4$-$5$ км, иногда может быть и $15$ км. Между поверхностью земли и основанием облака обычно бывает небольшое расстояние. В основании материнского облака находится воротниковое облако, верхняя поверхность которого располагается на высоте до $1500$ м. Сам смерч свисает от нижней поверхности стенного облака, лежащего под воротниковым облаком. Как насос смерч засасывает в облако различные предметы, которые попадая в вихревое кольцо, удерживаются в нем и переносятся на десятки километров.

Основной частью смерча является воронка , представляющая собой спиральный вихрь. Движение воздуха в стенках смерча идет по спирали со скоростью около$ 200$ м/с. Различные предметы, даже люди и животные, попавшие в смерч, поднимаются вверх в стенках, а не по пустой внутренней полости. Плотные смерчи имеют небольшую толщину стенок по сравнению с шириной полости. Воздух в воронке может достигать большой скорости от $600$-$1000$ км/ч. Существуют такие вихри минуты, реже бывает десятки минут. Одно облако может образовать целые группы смерчей. Смерчи могут пройти путь от сотен метров до сотен километров. Их средняя скорость составляет $50$-$60$ км/ч. Для них моря, озера, леса, холмы не являются преградой. Пройдя по земле смерч, может подняться в воздух, не касаясь её и затем снова опуститься. Разрушительная сила смерча большая – рвет линии электроснабжения и связи, выводит из строя технику, разрушает жилые и производственные здания, приводит к человеческим жертвам.

В пределах России смерчи чаще всего образуются в центральных областях, в Поволжье, на Урале и Сибири. Часто смерчи образуются на морях и, выходя на побережье, наращивают свою силу. Время и место появления смерча прогнозировать практически невозможно, возникают они в основном внезапно. Статистика говорит о смерчах вблизи Арзамаса, Мурома, Курска, Вятки, Ярославля.

На территории Европы эти опасные явления редки, и наблюдать их можно в жаркую летнюю погоду. На севере они были отмечены в южной Норвегии, Швеции, Соловецких островах, в Сибири – до нижнего течения Оби. Убытки от этих атмосферных явлений исчисляются миллионами долларов и, главное, человеческими жизнями.

Правила поведения при разных атмосферных явлениях

Те или иные атмосферные явления приносят ущерб не только хозяйству, но и гибель людей. С этой точки зрения люди должны знать правила – как себя вести в нестандартной ситуации, чтобы не погибнуть.

Правила поведения при снежных заносах :

  1. С предупреждением о заносах – ограничить передвижение;
  2. Создать запас продуктов, воды;
  3. Между домами натягиваются канаты;
  4. В автомобилях закрыть жалюзи, укрыть двигатель со стороны радиатора;
  5. Нельзя покидать машину, чтобы не потерять ориентир;
  6. В сельской местности заготовить корм животным;
  7. Нельзя находиться в ветхих строениях, под линиями электропередач, под деревьями.

Специального «рецепта» от смерча, конечно, не существует, но меры предосторожности помогут в этой ситуации.

Правила поведения во время смерча:

  1. В частных домах необходимо проверить крепление крыши;
  2. Убрать с открытого пространства легкие предметы – ящики, бочки;
  3. Закрыть все окна и двери;
  4. Перекрыть снабжение водой, газом и электричеством;
  5. Спуститься в подвальное помещение.

Правила поведения во время бури и грозы :

  1. Отключить электроприборы от сети питания;
  2. Не держать в руках металлические предметы;
  3. Не стоять с ними у открытого окна;
  4. Закрыть окна и двери;
  5. Находиться в центральной части комнаты;
  6. Остановить машину в какой-нибудь низине, если возможно;
  7. Машину покинуть, не бегать;
  8. Нельзя прятаться под деревьями, особенно под лиственницами и дубами;
  9. В лесу палатка должна стоять в низком месте;
  10. Мокрые вещи притягивают молнию;
  11. Укрываться можно среди низкорослых деревьев;
  12. Глинистая почва увеличивает опасность;
  13. Нельзя подходить к металлическим трубам и полуразрушенным зданиям;

Часто грозы идут против ветра. Перед грозой наступает полный штиль или ветер резко меняет направление.



Поделитесь с друзьями или сохраните для себя:

Загрузка...