Первые многоклеточные организмы. Подцарство Многоклеточные — определение, признаки и характеристики

Все живые организмы разделяются на подцарства многоклеточных и одноклеточных существ. Последние представляют собой одну клетку и относятся к простейшими, в то время как растения и животные являются теми структурами, в которых веками развивалась более сложная организация. Количество клеток варьируется в зависимости от разновидности, к которой относится особь. Размер большинства настолько мал, что увидеть их можно только под микроскопом. Клетки появились на Земле примерно 3,5 миллиарда лет назад.

В наше время все процессы, происходящие с живыми организмами, изучает биология. Подцарством многоклеточных и одноклеточных занимается именно эта наука.

Одноклеточные организмы

Одноклеточность определяется наличием в организме единственной клетки, которая выполняет все жизненные функции. Всем известные амеба и инфузория-туфелька представляют собой примитивные и, вместе с тем, древнейшие формы жизни, которые являются представителями этого вида. Они были первыми живыми существами, что обитали на Земле. Сюда же входят такие группы, как споровики, саркодовые и бактерии. Все они малы и в основном невидимы для невооруженного глаза. Их принято разделять на две общие категории: прокариотические и эукариотические.

Прокариоты представлены простейшими или грибами некоторых видов. Кто-то из них живет колониями, где все особи одинаковы. Весь процесс жизни осуществляется в каждой отдельной клетке для того, чтобы она выжила.

Прокариотические организмы не имеют связанных мембранами ядер и клеточных органелл. Это обычно бактерии и цианобактерии, такие как кишечная палочка, сальмонеллы, ностоки и др.

Все представители этих групп различаются по размеру. Самая малая бактерия имеет длину всего 300 нанометров. Одноклеточные обычно обладают специальными жгутиками или ресничками, которые участвуют в их передвижении. Они имеют простое тело с выраженными основными чертами. Питание, как правило, происходит в процессе поглощения (фагоцитоза) пищи и хранится в специальных органоидах клетки.

Одноклеточные доминировали как форма жизни на Земле в течение миллиардов лет. Однако эволюция от простейших к более сложным особям изменила весь ландшафт, поскольку она привела к зарождению биологически развитых связей. Кроме того, появление новых видов привело к образованию новой среды с разнообразными экологическими взаимодействиями.

Многоклеточные организмы

Основной характеристикой подцарства многоклеточных является наличие в одном индивидууме большого количества клеток. Они скрепляются между собой, тем самым создавая совершенно новую организацию, которая состоит из множества производных частей. Основное количество из них можно увидеть без каких-то специальных приборов. Растения, рыбы, птицы и животные выходят из единственной клетки. Все существа, входящие в подцарство многоклеточных, регенерируют новые особи из зародышей, которые формируются из двух противоположных гамет.

Любая часть особи или цельный организм, который определяется большим количеством составляющих, является сложной, высоко развитой структурой. В подцарстве многоклеточных классификация четко разделяет функции, при которых каждая из отдельных частиц выполняет свою задачу. Они занимаются процессами жизнедеятельности, поддерживая этим существование всего организма.

Подцарство Многоклеточные на латыни звучит как Metazoa. Чтобы сформировать сложный организм, клетки нужно идентифицировать и присоединить к другим. Только с десяток простейших можно заметить индивидуально невооруженным глазом. Остальные почти два миллиона видимых особей являются многоклеточными.

Плюрицеллюлярные животные созданы результатом объединения особей путем образования колоний, нитей или агрегации. Плюрицеллюлярные развивались самостоятельно, вроде вольвокса и некоторых жгутиковых зеленых водорослей.

Признаком подцарства многоклеточных, то есть его ранних примитивных видов, было отсутствие костей, раковин и других твердых частей тела. Поэтому их следов не сохранилось до наших дней. Исключением являются губки, обитающие в морях и океанах до сих пор. Возможно, их останки находятся в каких-нибудь древних скалах, как, например, Grypania spiralis, окаменелости которых найдены в древнейших слоях черного сланца, относящегося к раннепротерозойской эре.

В находящейся ниже таблице подцарство многоклеточных представлено во всем его многообразии.

Сложные взаимосвязи возникли в результате эволюции простейших и появления способности клеток разделяться по группам и организовывать ткани и органы. Существует много теорий, объясняющих механизмы, с помощью которых одноклеточные могли эволюционировать.

Теории возникновения

На сегодняшний день существуют три основных теории возникновения подцарства многоклеточных. Краткое содержание синцитиальной теории, чтобы не углубляться в подробности, можно описать в нескольких словах. Суть ее состоит в том, что примитивный организм, который имел в своих клетках несколько ядер, мог со временем разделить внутренней мембраной каждое из них. Например, несколько ядер содержит грибок плесени, а также инфузория-туфелька, чем подтверждают эту теорию. Однако наличия нескольких ядер недостаточно для науки. Чтобы подтвердить теорию их множественности, необходимо наглядное превращение в хорошо развитое животное простейшего эукариота.

Теория колоний говорит, что симбиоз, состоящий из разных организмов одного вида, привел к их изменению и появлению более совершенных существ. Геккель — первый ученый, кто представил эту теорию в 1874 году. Сложность организации возникает потому, что клетки остаются вместе, а не разъединяются в процессе деления. Примеры этой теории можно увидеть у таких простейших многоклеточных, как зеленые водоросли, которые называются эвдорина или вольвакса. Они образуют колонии, которые насчитывает до 50000 клеток в зависимости от вида.

Теория колоний предлагает слияние различных организмов одного вида. Преимущество этой теории заключается в том, что было замечено, как во время нехватки продовольствия амебы группируются в колонию, которая передвигается словно единое целое, в новое место. Какие-то из этих амеб немного отличаются друг от друга.

Однако проблема этой теории заключается в том, что неизвестно, как ДНК разных особей могут быть включены в единый геном.

Например, митохондрии и хлоропласты могут быть эндосимбионтами (организмами в организме). Это случается крайне редко, и даже тогда геномы эндосимбионтов сохраняют между собой различия. Они отдельно синхронизируют свою ДНК во время митоза видов хозяев.

Два или три симбиотических индивидуума, образующих лишайник, хотя и зависят друг от друга ради выживания, но должны отдельно размножаться, а затем повторно соединяться, снова создавая единый организм.

Другие теории, которые также рассматривают возникновение подцарства многоклеточных:

  • Теория GK-PID. Около 800 миллионов лет назад незначительное генетическое изменение в одной молекуле под названием GK-PID, возможно, позволило особям перейти от одной клетки к более сложной структуре строения.
  • Роль вирусов. Недавно было признано, что гены, позаимствованные у вирусов, играют решающую роль в делении тканей, органов и даже при половом размножении, при слиянии яйцеклетки и сперматозоида. Был найден первый белок syncytin-1, который передался от вируса к человеку. Он находится в межклеточных мембранах, которые разделяют плаценту и мозг. Второй белок был выявлен в 2007 году и назван EFF1. Он помогает формировать кожу круглых червей нематод и является частью целого семейства белков FF. Доктор Феликс Рей в Институте Пастера в Париже построил 3D-макет структуры EFF1 и показал, что это он связывает частицы вместе. Этот опыт подтверждает тот факт, что все известные слияния мельчайших частиц в молекулы имеют вирусное происхождение. Это также говорит о том, что вирусы были жизненно важны для коммуникации внутренних структур, и без них было бы невозможным появления колонии подцарства многоклеточных типа губок.

Все эти теории, как и многие другие, которые продолжают предлагать известные ученые, очень интересны. Однако ни одна из них не может четко и однозначно ответить на вопрос: как из единственной клетки, которая зародилась на Земле, могло появиться такое огромное разнообразие видов? Или: почему одиночные особи решили объединиться и стали существовать вместе?

Может, пройдет несколько лет, и новые открытия смогут нам дать ответы на каждый из этих вопросов.

Органы и ткани

Сложные организмы имеют такие биологические функции, как защита, кровообращение, пищеварение, дыхание и половое размножение. Они выполняются определенными органами, такими как кожа, сердце, желудок, легкие и половая система. Они состоят из множества различных типов клеток, которые работают сообща для выполнения конкретных задач.

Например, сердечная мышца имеет большое количество митохондрий. Они производят аденозинтрифосфат, благодаря которому кровь беспрерывно движется по кровеносной системе. У клеток кожи, наоборот, меньше митохондрий. Вместо этого они имеют плотные белки и производят кератин, который защищает мягкие внутренние ткани от повреждений и внешних факторов.

Размножение

В то время как все без исключения простейшие организмы размножаются бесполым путем, многие из подцарства многоклеточных предпочитают половое размножение. Люди, например, являются сложнейшей структурой, созданной путем слияния двух одиночных клеток, называемых яйцеклеткой и сперматозоидом. Слияние одной яйцеклетки с гаметой (гаметы - это специальные половые клетки, содержащие один набор хромосом) сперматозоида приводит к образованию зиготы.

Зигота содержит генетический материал как спермы, так и яйцеклетки. Деление ее приводит к развитию абсолютно нового, отдельного организма. Во время развития и деления клетки, согласно заложенной в генах программе, начинают дифференцироваться по группам. Это в дальнейшем позволит им выполнять совершенно разные функции, несмотря на то что они генетически идентичны друг другу.

Таким образом, все органы и ткани организма, которые образуют нервы, кости, мышцы, сухожилия, кровь, — все они возникли из одной зиготы, появившейся благодаря слиянию двух одиночных гамет.

Преимущество многоклеточных

Есть несколько основных преимуществ подцарства многоклеточных организмов, благодаря которым они доминируют на нашей планете.

Поскольку сложное внутреннее строение позволяет увеличить размер, оно также помогает развивать структуры и ткани более высокого порядка с многочисленными функциями.

Крупные организмы имеют лучшую защиту от хищников. Они также обладают большей мобильностью, что позволяет им мигрировать в более благоприятные для проживания места.

Есть еще одно неоспоримое преимущество подцарства многоклеточных. Общая характеристика всех его видов — это достаточно долгая продолжительность жизни. Тело клетки подвергается воздействию окружающей среды со всех сторон, и любое ее повреждение может привести к гибели индивидуума. Многоклеточный организм будет продолжать существовать, даже если одна клетка погибнет или будет повреждена. Дублирование ДНК также является преимуществом. Деление частиц внутри организма позволяет быстрее расти и восстанавливаться поврежденным тканям.

Во время своего деления новая клетка копирует прежнюю, что позволяет сохранить благоприятные черты в следующих поколениях, а также со временем их усовершенствовать. Другими словами, дублирование позволяет сохранить и адаптировать черты, которые улучшат выживание или пригодность организма, особенно в царстве животных, подцарстве многоклеточных.

Недостатки многоклеточных

У сложных организмов имеются и недостатки. Например, они подвержены различным заболеваниям, возникающим из-за комплексного биологического состава и функций. У простейших, наоборот, не хватает развитых систем органов. Это означает, что риски опасных болезней у них сведены к минимуму.

Важно отметить, что в отличие от многоклеточных, примитивные особи обладают способностью к бесполому размножению. Это помогает им не тратить ресурсы и энергию на поиски партнера и сексуальную деятельность.

Простейшие организмы также обладают способностью принимать энергию путем диффузии или осмоса. Это освобождает их от необходимости передвижения для поиска пищи. Практически все может стать потенциальным источником пищи для одноклеточного существа.

Позвоночные и беспозвоночные

Всех без исключения входящих в подцарство многоклеточных существ классификация делит на два вида: позвоночных (хордовых) и беспозвоночных.

У беспозвоночных нет твердого каркаса, в то время как хордовые имеют хорошо развитый внутренний скелет хряща, кости и высокоразвитый мозг, который защищен черепом. Позвоночные имеют прекрасно развитые органы чувств, дыхательную систему с жабрами или легкими и развитую нервную систему, что еще больше отличает их от более примитивных собратьев.

Оба типа животных живут в различных местах обитания, но хордовые, благодаря развитой нервной системе, могут адаптироваться к суше, морю и воздуху. Тем не менее, беспозвоночные также встречаются в широком диапазоне, от лесов и пустынь до пещер и грязи морского дна.

На сегодняшний день выявлено почти два миллиона видов подцарства многоклеточных беспозвоночных животных. Эти два миллиона составляют около 98 % от всех живых существ, то есть 98 из 100 видов проживающих в мире организмов — беспозвоночные. Человеческие особи относятся к семейству хордовых.

Позвоночные подразделяются на рыб, земноводных, рептилий, птиц и млекопитающих. Не имеющие позвоночника животные представляют такие типы, как членистоногие, иглокожие, черви, кишечнополостные и моллюски.

Одним из самых главных различий между этими видами является их размер. Беспозвоночные, такие как насекомые или кишечнополостные, малы и медлительны, потому что не могут развить крупное тело и сильные мышцы. Есть несколько исключений, таких как кальмар, который может достигать 15 метров в длину. Позвоночные имеют универсальную систему поддержки, а потому могут быстрее развиваться и становиться крупнее, чем беспозвоночные.

Хордовые имеют также высокоразвитую нервную систему. С помощью специализированной связи между нервными волокнами, они могут реагировать очень быстро на изменения в окружающей среде, что дает им несомненное преимущество.

По сравнению с позвоночными, большинство животных, не имеющих хребта, используют простую нервную систему и ведут себя почти полностью инстинктивно. Подобная система работает хорошо большую часть времени, хотя эти существа часто неспособны учиться на своих ошибках. Исключениями являются осьминоги и их близкие родственники, которые считаются одними из самых умных животных в мире беспозвоночных.

У всех хордовых, как нам известно, имеется позвоночник. Однако особенностью у подцарства многоклеточных беспозвоночных животных является сходство с их сородичами. Оно заключается в том, что на определенном этапе жизни позвоночные также имеют гибкий опорный стержень, нотохорд, который впоследствии становится позвоночником. Первая жизнь развивалась в виде одиночных клеток в воде. Беспозвоночные были начальным звеном эволюции других организмов. Их постепенные изменения привели к появлению сложных существ с хорошо развитым скелетом.

Кишечнополостные животные

Сегодня насчитывается около одиннадцати тысяч видов кишечнополостных. Это одни из самых древнейших сложных животных, появившихся на земле. Самых маленьких из кишечнополостных невозможно увидеть без микроскопа, а самая большая известная медуза — 2,5 метра в диаметре.

Итак, давайте подробнее познакомимся с подцарством многоклеточных, типом кишечнополостные. Описание основных характеристик мест обитания можно определить наличием водной или морской среды. Они живут одиночно или в колониях, которые могут свободно передвигаться или жить на одном месте.

Форма тела кишечнополостных называется «мешком». Рот соединяется со слепым мешком, который называется «гастроваскулярной полостью». Этот мешок функционирует в процессе пищеварения, газообмена и действует как гидростатический скелет. Единственное отверстие служит как ртом, так и задним проходом. Щупальца — длинные, полые структуры, используются для перемещения и захвата пищи. Все кишечнополостные имеют щупальца, покрытые присосками. Они оснащены специальными клетками — немоцистами, которые могут впрыскивать токсины в свою жертву. Присоски также позволяют захватывать крупную добычу, которую животные помещают в рот путем втягивания щупалец. Нематоцисты отвечают за ожоги, которые некоторые медузы наносят людям.

Животные подцарства многоклеточные, типа кишечнополостные обладают как внутриклеточным, так и внеклеточным пищеварением. Дыхание происходит путем простой диффузии. У них имеется сеть нервов, которые распространяются по всему телу.

Многие формы проявляют полиморфизм, то есть разнообразие генов, в котором различные типы существ присутствуют в колонии для различных функций. Эти особи называются зооидами. Воспроизводство можно называть беспорядочным (внешнее почкование) или половым (формирование гамет).

Медузы, например, производят яйцеклетки и сперматозоиды, а затем выпускают их в воду. Когда яйцо оплодотворено, оно развивается в свободно плавающую личинку с ресничками, называемую «планлой».

Типичными примерами подцарства Многоклеточные типа кишечнополостные являются гидры, обелия, португальский кораблик, парусница, медуза-аурелия, медуза-кочан, актинии, кораллы, морское перо, горгонарии и т. д.

Растения

В подцарстве Многоклеточные растения - это эукариотические организмы, способные питаться в процессе фотосинтеза. Водоросли изначально считались растениями, но теперь они относятся к протистам — особой группе, которая исключена из всех известных видов. Современное определение растений относится к организмам, которые живут в основном на суше (а иногда и в воде).

Другой отличительной особенностью растений является зеленый пигмент — хлорофилл. Он используется для поглощения солнечной энергии в процессе фотосинтеза.

У каждого растения есть гаплоидные и диплоидные фазы, которые характеризуют его жизненный цикл. Он называется чередованием поколений, потому что все фазы в нем являются многоклеточными.

На Земле лишь самые простые существа состоят из одной клетки. Все сложно организованные растения, животные и грибы состоят из нескольких клеток, и у большинства многоклеточных организмов клеток действительно очень много.
Переход к дыханию кислородом вызвал необходимость того, чтобы весь кислород доходил до всех клеток. Но вначале кислорода было довольно мало, так что его было недостаточно для проникновения в глубь клеточных слоев. И лишь когда деятельность фотосинтезирующих одноклеточных привела к тому, что атмосфера Земли насытилась кислородом, появились многоклеточные организмы.
Узнать, какова была концентрация кислорода в прошлом, позволяют геологические изыскания. Некоторые минералы не могут существовать в атмосфере, богатой кислородом, и, если бы их удалось обнаружить в каком-нибудь слое земной коры, то это означало бы, что кислорода в те времена было довольно мало. Хотя жизнь возникла довольно давно, первые многоклеточные существа появились чуть более одного миллиарда лет назад. Это были растения.
Многоклеточные животные появились еще позже - 600 миллионов лет назад. Как ни странно, это были крупные существа, напоми-

Пейзаж времен палеозоя

нающие медуз. В те времена на всей планете не было ни одного хищника.
По всей видимости, первые многоклеточные существа не стали предками современных многоклеточных организмов, видимо, многоклеточные существа возникали не один раз. Первые существа с твердым скелетом появились около 540 миллионов лет назад. Об этих организмах мы знаем гораздо больше, их облик известен нам гораздо лучше, чем внешний вид самых древних организмов, ведь по скелету -
неважно, раковине, панцирю или кости - можно представить то существо, чьей частью он был.
Поскольку до момента появления скелета ясных отпечатков не оставалось, все, что происходило до этого, назвали эрой скрытой жизни, или криптозоем, а все, что произошло потом, - палеозоем. Скелет стал настоящей революцией. Это опора, а значит движение, высокий рост, защита, возможность противостоять силе тяжести на суше и завоевать новые пространства.
Нужно помнить, что суша в то время была безжизненной, и все живое существовало лишь в океане. Что же вызвало появление скелета у древних организмов? Вероятно, увеличение количества кислорода позволило вести более активную жизнь. Активность привела к быстрому накоплению твердых отходов в организме и развитию скелета.
Некоторые организмы образовывали колонии таких размеров, что меняли облик древних водоемов. Это известковые водоросли и губки.
Вероятно, первыми существами, которые начали уничтожать других, стали головоногие моллюски, к которым относятся современные осьминоги, каракатицы и кальмары.
Несмотря на то что позвоночные животные появились тоже достаточно давно, они занимали не самые почетные места в древнем раскладе сил. Бесчелюстные панцирные - пред
ки рыб, уже были похожи на рыб, которых мы едим или разводим в аквариумах. Панцирь покрывал и бесчелюстных, и первых настоящих рыб. Но рыбы обрели привычный для нас облик лишь миллионы лет спустя.

Еще по теме КАК ВОЗНИКЛИ МНОГОКЛЕТОЧНЫЕ ОРГАНИЗМЫ?:

  1. КАК ВОЗНИКЛА ИДЕЯ БИЗНЕСА И СОУЧРЕДИТЕЛИ ПОЗНАКОМИЛИСЬ ДРУГ С ДРУГОМ
  2. 6. Поздний докембрий: возникновение многоклеточности. Гипотеза кислородного контроля. Эдиакарский эксперимент.

В основе большинства представлений о возникновении мно­гоклеточных лежит давнее убеждение, что они произошли от ко­лоний Protozoa и что, следовательно, тело одноядерного про­стейшего в морфологическом отношении отвечает отдельной клетке многоклеточного животного. При этом полагают, что в процессе эволюции постепенно развилась новая индивидуаль­ность многоклеточного организма, резкое подчинение ей и по­давление индивидуальности отдельных клеток. Иными словами, метазоон по сравнению с простейшим признается индивидом высшего порядка. Колониальные гипотезы, таким образом, в полном соответствии с клеточной теорией рассматривают клет­ку как элементарную структурную единицу, позволяющую срав­нивать и анализировать организацию всех Protozoa, Metazoa и Metaphyta (многоклеточных растений).

Гипотеза гастреи Э. Геккеля. Первую гипотезу о колониальном происхождении многоклеточных - гипотезу «гастреи» - предло­жил Э. Геккель. В основу этой гипотезы, которую он разрабатывал с начала 70-х гг. XIX в., легла идея о гомологии зародышевых листков у всех многоклеточных животных, высказанная впервые Т. Гексли. Ко времени появления гипотезы гастреи учение о заро­дышевых листках сделало большие успехи благодаря работам Т. Гек­сли, К. Ф. Вольфа, К. Бэра и др. Геккель опирался на достижения эмбриологии своего времени и в частности на исследова­ния А. О. Ковалевского.

Важнейшим «орудием» при создании теории гастреи был био­генетический закон, обоснованный почти одновременно Ф. Мюл­лером и Геккелем в 60-е гг. XIX в. Согласно Геккелю, «онтогения представляет собой краткое повторение филогении, механиче­ски обусловленное функциями наследственности и приспособ­ляемости» (Haeckel, 1874). Он рассматривал так называемые пер­вичные зародышевые листки - эктодерму и энтодерму гаструлы как проявление в онтогенезе соответственных примитивных ор­ганов первобытных предков. Всем прочим начальным стадиям онтогенеза Геккель также приписывал абсолютное рекапитуля-ционное значение. Все характерные стадии дробления "(рис. 12) отвечают, по мнению Геккеля, сходным стадиям филогенеза. Так, яйцу, или цистуле, соответствует одноклеточный предок Cytaea, стадии морулы - предковая форма «морея» и т. п. Особенно важ­ной и широко распространенной в животном мире рекапитуля­цией (т. е. повторением филогенеза в онтогенезе) Геккель считал двухслойную зародышевую стадию - гаструлу. Общего гипоте­тического прародителя всех Metazoa он создал по ее образу и подобию.

Рис.12. Стадии эмбрионального развития кораллового

полипа (по Геккелю)

Первой филогенетической стадией, по Геккелю, был одно­клеточный амебообразный организм. От него произошли все ани-мально питающиеся организмы. Колония одинаковых амебоидных клеток дала затем начало «морее» - плотному шарообразному организму, рекапитуляцию которого в онтогенезе представляет морула. Путем накопления в центре морей жидкости или студе­нистого вещества, вытеснившего клетки на периферию, посте­пенно сформировалась свободноплавающая «бластея» (в онтоге­незе ей отвечает бластула). Клетки бластеи сперва были покрыты псевдоподиями, которые позднее приобрели способность быст­ро двигаться и изгибаться и превратились в жгуты, служащие для плавания.

Следующей очень важной стадией была гастрея, образовавша­яся из бластеи путем выпячивания (инвагинации) стенки тела на переднем полюсе. Наружный клеточный слой гастреи был снаб­жен жгутиками и сохранил функцию движения, внутренний слой стал кишечным. В центральной, кишечной, полости, сообщав­шейся ртом с наружной средой, происходило переваривание за­глоченной добычи. Два эпителиальных слоя гастреи - эктодерма и энтодерма - представляли собой первичные органы, из кото­рых у потомков гастреи возникли все их органы и ткани.

Современных кишечнополостных и губок Геккель рассматри­вал как мало изменившихся потомков гастреи, а стадию гастру­лы - как рекапитуляцию гастреи.

Все многоклеточные, согласно Геккелю, в отличие от про­стейших имеют монофилетическое происхождение и развились от одной прародительской формы - гастреи, произошедшей, в свою очередь, от одноклеточных предков. От гастреи все Metazoa унаследовали первичный кишечник и два первичных зародыше­вых листка, их ткани представляют собой дериваты этих двух листков.

Свою гипотезу Геккель характеризовал как попытку улучшить филогенетические основы естественной классификации и выяс­нить пути развития главных систематических групп животного мира. Действительно, из гипотезы гастреи вытекал ряд существенных выводов для систематики, сравнительной анатомии, эмбриоло­гии и гистологии. Однако самым важным следствием появления гипотезы гастреи было разрушение учения о типах Кювье, все еще господствовавшего в зоологии того времени.

Из гипотезы Геккеля следует, что истинные гомологии орга­нов и их систем возможны у всех потомков гастреи, т. е. у предста­вителей разных типов, тогда как теорией типов эта возможность отрицалась. Так как гаструла у всех Metazoa гомологична, то гомо-логичен всегда и кишечник. Гомологичны, далее, у всех Metazoa и кожные покровы, поскольку всегда имеется слой эпидермиса, служащий источником для развития других кожных слоев - кути­кулы, железистых образований и пр. - и отвечающий эктодерме гастреи. Нервная система всегда развивается из эктодермы и гомо­логична во всех группах животных. Геккель видел также основа­ния для гомологизации выделительных органов, целома и крове­носной системы у тех животных, у которых они имеются. Для органов чувств, скелета и сердца он считал общую гомологию неприемлемой и полагал, что все эти органы развились в разных группах независимо. Он признавал достоверным различное про­исхождение ротового отверстия в разных группах многоклеточ­ных. Бластопор гаструлы, гомологичный рту гастреи, сохраняется во взрослом состоянии у кишечнополостных, у губок (в виде ус­тья) и у низших червей. Рот иглокожих, членистоногих и позво­ночных, по Геккелю, есть новообразование.

Таким образом, Геккель признавал широкие возможности кон­вергентного развития различных важных особенностей в строе­нии животных.

Он считал первичной тканью однослойный жгутиковый эпи­телий, а все прочие ткани - вторичными производными эпите­лия. Эктодерму и энтодерму Геккель считал первичными зароды­шевыми листками. Мезодерма же, по его мнению, возникла в процессе эволюции гораздо позднее, так как в онтогенезе она всегда образуется из эктодермы и энтодермы и, по существу, даже не представляет единого листка, а имеет двойственную природу, слагаясь из пластинок, развившихся независимо из кожно-мус-кульной и кишечномускульной пластинок.

Так как мезодерма всегда развивается из парных зачатков, то, по Геккелю, у разных групп животных она имеет общее проис­хождение и может считаться гомологичной. Первичные зароды­шевые листки у низших - губок и кишечнополостных - в от­личие от таковых у высших типов сохраняются как первичные органы, подобно тому, как это имело место у гипотетической гастреи.

Гипотеза Геккеля долгое время была господствующей, некото­рые крупные зоологи придерживаются ее и теперь. Ее положи­тельная роль в зоологии была чрезвычайно велика, так как она показала единство и общность происхождения всех многоклеточ­ных и тем способствовала прогрессу дарвинизма.

Однако гипотеза гастреи страдает существенными недостатка­ми, которые не укрылись уже от некоторых современников Гек­келя и давали повод для ее резкой критики.

Действительно, гипотеза гастреи не согласуется со многими данными зоологии и должна уступить место более совершенной концепции. Впрочем, учение о протозойных колониальных пред­ках Metazoa, лежащее в основе обобщений Геккеля, целиком со­храняет свое значение и поныне. Вторым «рациональным» зерном гипотезы гастреи следует считать учение о бластее, которое без особенных изменений было воспринято авторами некоторых дру­гих колониальных гипотез.

Известный русский эмбриолог В. В. Заленский (1874) подроб­но рассмотрел первые стадии эмбрионального развития различ­ных животных с точки зрения соответствия их теории гастреи. Главнейшим моментом в онтогенезе животных он считал пер­вую дифференциацию зародышевых листков. Общий ход рассуж­дении В. В. Заленского был таков. В типичных случаях у низших многоклеточных после дробления и стадии морулы формируется двуслойная бескишечная форма - планула. Если же образуется полая шаровидная бластула, то затем в ее полости появляются энтодермальные клетки и возникает стадия (дибластула), впол­не сравнимая с планулой, так как она, по существу, тоже имеет два зародышевых листка и лишена эпителиальной кишки. В тех случаях, когда путем впячивания образуется гаструла с мешковидной кишкой и ртом, мы, на взгляд Заленского, имеем вто­рично измененное развитие, обеспечивающее очень раннее по­явление кишечника и характеризующееся выпадением стадии планулы. Поэтому Заленский думал, что общий предок Metazoa, скорее, должен был обладать признаками планулы, нежели гас­треи. Заленский, фактически, был предшественником И. И. Меч­никова, выдвинувшего известную гипотезу фагоцителлы.

Гипотеза фагоцителлы И.И.Мечникова. Подобно Заленскому, И. И. Мечников подверг гипотезу гастреи резкой критике. В част­ности, он заметил, что идентичности первичной гаструлы у всех Metazoa, принимаемой Геккелем, в действительности не существует. У разных животных эта стадия имеет различные особенности и раз­вивается по-разному, что далеко не всегда можно объяснить вто­ричными причинами. Истинные двуслойные, инвагинационные гаструлы, как этого требует теория гастреи, в действительности крайне редки. В законченном виде гипотеза фагоцителлы И. И. Меч­никова изложена в заключительной главе его монографии «Эмб­риологические исследования над медузами» (1886).

Будучи сторонником колониального происхождения, И. И. Меч­ников, как и Геккель, видел отдаленных предков многоклеточ­ных в жгутиконосцах с животным питанием.

Мечников считал инвагинацию, путем которой образуется гаструла, вторичным способом образования энтодермы, возникшим в результате длительной и сложной эволюции.

Гипотеза И. И. Мечникова состоит в следующем. Первичный метазоон был шаровидным и имел сначала однослойное строе­ние. Иными словами, признается бластея, и в этом - совпадение с гипотезой Геккеля.

Поскольку у Metazoa полость дробления обычно появляется очень рано и зародыш быстро превращается в бластулу, предком многоклеточных Мечников считал бластулообразную колонию жгу­тиконосцев. Он полагал, что тотальное дробление многоклеточ­ных следует выводить из деления жгутиконосцев: первые мериди­ональные деления дробящегося яйца представляют собой наследие от флагелятных предков, поскольку для жгутиконосцев характер­но именно продольное деление. Исходную шарообразную форму колонии Мечников пытается также объяснить исходя из продоль­ного деления жгутиконосцев. Если деление клетки все время про­исходит продольно, то получается пластинка, но если третье де­ление изменится, станет поперечным, то в результате возникает шаровидная колония клеток. Именно такое изменение направле­ния деления и произошло в филогенезе. Таким образом, предком Metazoa была колония, у которой направления деления чередо­вались в трех координатных плоскостях. Мечников думал, что образование двуслойной стадии произошло не путем впячива-ния, а путем иммиграции - внедрения отдельных клеток в по­лость бластулы, в результате чего образовался зачаток энтодер­мы. Эволюционные истоки такой иммиграции он видел в явлении фагоцитоза.

Питание первичного метазоона, по Мечникову, совершалось теми же клетками, которые служили для движения, т. е. жгутико­выми клетками путем внутриклеточного пищеварения (фагоцитоза). И. И. Мечников предположил, что перегруженные пищей клетки легко теряли жгутик и уходили в полость организма, за­тем они снова могли выходить на поверхность и формировать жгутик. Так получилась первая факультативная дифференциация на наружный слой клеток - «кинобласт» - и на внутреннюю клеточную массу - «фагоцитобласт». Эта дифференциация затем закрепилась в эволюции, и образовался компактный организм - паренхимелла, моделью которого он считал личинку губок - паренхимуллу. Позднее Мечников назвал этот организм фагоцител-лой. Это и был общий предок многоклеточных животных.

Дальнейшая судьба фагоцителлы такова. Некоторые ее потом­ки перешли к сидячему образу жизни и дали начало губкам. Дру­гие стали ползать, приобрели билатеральную симметрию и рото­вое отверстие.От них произошли бескишечные плоские черви турбеллярии, у которых еще нет кишечника и пищеварение со­вершается в лакунах паренхимы и в блуждающих клетках - фаго­цитах. Третьи, сохранив плавающий образ жизни, приобрели рот, испытали эпителизацию фагоцитобласта и превратились в пер­вичных кишечнополостных - родоначальников сидячих полипов.

Таким образом, гипотеза И. И. Мечникова объясняла с эволю­ционной точки зрения все главные этапы онтогенеза Metazoa и предлагала новые филогенетически обоснованные представления о первичных зародышевых листках и их дальнейшей эволюции. На этой основе Мечников нарисовал вполне правдоподобную гипоте­тическую картину эволюционного становления Metazoa и первых этапов их филогенетического развития, картину, которая хорошо объясняет множество эмбриологических и сравнительно-анатоми­ческих факторов, непонятных с точки зрения других гипотез.

А. А. Захваткин в 1949 г. выдвинул гипотезу о происхождении многоклеточных от колониальных жгутиконосцев на основе па-линтомии - особой формы бесполого размножения путем после­довательных делений клетки без стадий роста получающихся до­черних клеток. Такое деление является, по его мнению, прообразом дробления яйца у Metazoa.

Другой путь эволюционного формирования Metazoa предложил А. В. Иванов в конце 60-х гг., считавший, что гипотетические ис­ходные колонии жгутиконосцев не были палинтомическими и во­обще мало отличались от шаровидных колоний современных во-ротничковых жгутиконосцев.

Иванов принимает за основу теорию фагоцителлы Мечникова. Однако прообразом фагоцителлы он считает не личинку губок, а примитивное плоское многоклеточное трихоплакс, являющееся единственным представителем типа Пластинчатые (Placozoa). Схема возникновения многоклеточных, согласно Иванову, представле­на на рис. 13.

Рис. 13. Главнейшие предполагаемые стадии филогенеза Metazoa

по А. В. Иванову:

1 - колония жгутиконосцев; Б - миграция клеток жгутиконосцев внутрь; В - ранняя фагоцителла; Г - поздняя фагоцителла; Д - первичная турбеллярия - появление рта и билатеральной симметрии; Е - примитивная бескишечная тур­беллярия - усиление дифференциации клеток, смещение рта на брюшную сто­рону; Ж - примитивная губка - переход к сидячему образу жизни, замена локомоторной функции киноцитов гидрокинетической; 3 - первичное кишеч-нополостное типа гастреи - образование рта, эпителизация фагоцитобласта

Поскольку в эмбриогенезе низших многоклеточных двуслой­ных зародыш образуется чаще путем иммиграции, большинство зоологов считают, что именно таким путем и шло преобразова­ние шаровидной колонии жгутиконосцев в первый многокле­точный организм. При этом у предковых форм многоклеточных образование двух клеточных слоев сопровождалось специализа­цией клеток и колония жгутиконосцев превратилась в единый многоклеточный организм. Наружный слой сохранил двигатель­ную и чувствительную функции, а внутренний - пищеваритель­ную и половую.

Существование клетки зависит от выполнения ею ряда обязательных условий. К ним относятся отграничение от окружающей среды и вместе с тем обмен веществами с этой средой. На основе биохимических механизмов внутри клетки происходят реакции диссимиляции и ассимиляции, образуются химические соединения для выполнения тех или иных функций. В процессе жизнедеятельности возникают вещества, которые подлежат удалению. Приобретение клеткой способности к активному движению облегчает задачу поиска пищи и избегания опасных ситуаций. Сохранение жизни во времени зависит от способности клеток к делению. В ходе эволюции совершенствование жизненно важных функций происходит путем их дифференциации, т.е. обособления. Нередко такое обособление связано с возникновением специальных структур. У одноклеточных организмов, например у инфузории, это проявляется в приобретении некоторыми внутриклеточными структурами специализации (см. рис. 2.2). Так, пищеварительные вакуоли обеспечивают переваривание поступающих извне веществ с утилизацией клеткой необходимых химических соединений и выведением вовне непереваренных остатков. Функция сократительных вакуолей состоит в регулировании водного баланса, ресничек - в обеспечении двигательной активности.

Названная закономерность, проявляющаяся в разделении и специализации функций и структур, представляет собой одно из всеобщих свойств жизни. Возникновение среди живых форм многоклеточных организмов, с которыми связано прогрессивное направление эволюции, является логичным развитием этого свойства. В таких организмах усиление жизненной силы благодаря многократному повторению клеточных механизмов сочетается с широчайшим размахом разделения функций, их совершенствованием, образованием разнообразных специализированных структур - органов и их систем.

Переход к многоклеточности - одновременно и новое качественное состояние жизни, для которого характерно ускорение эволюционных преобразований на основе более полного использования резерва наследственной изменчивости. Это обусловлено, во-первых, объединением у многоклеточных организмов полового процесса и размножения в единое целое - половое размножение (см. гл. 5). Во-вторых, хотя цикл индивидуального развития имеют все живые формы, включая вирусы, только у многоклеточных организмов выделяется эмбриональный период. Значение названного периода заключается в том, что, с одной стороны, в нем отражен весь длительный процесс исторического развития данного биологического вида, с другой - именно путем изменений в ходе эмбриогенеза происходят эволюционные изменения (см. § 13.2).

Отмеченные особенности многоклеточной организации живых существ сделали их основой дальнейшей прогрессивной эволюции. Эволюционными предшественниками многоклеточных организмов были колониальные формы простейших организмов (см. § 13.1). Наиболее ранние ископаемые останки многоклеточных животных имеют возраст около 700 млн. лет. Палеонтологическая летопись свидетельствует о том, что многоклеточные организмы возникали в ходе эволюции от одноклеточных эукариот независимо не менее 17 раз. Из ныне существующих многоклеточных животных губки ведут свою родословную от одного предка, тогда как все другие формы - от какого-то другого. В процессе исторического развития на планете возникло не менее 35 типов многоклеточных организмов. Из них до сих пор существует 26, будучи представленными более чем 2 млн. видов.



Поделитесь с друзьями или сохраните для себя:

Загрузка...