Проект биология электричество в живых организмах. Электричество – мощная природная сила на службе человечества

Многие цветы и листья имеют способность закрываться и раскрываться в зависимости от времени и суток. Это обусловлено электрическими сигналами, представляющими собой потенциал действия. Можно заставить листья закрываться с помощью внешних электрических раздражителей. Кроме то го, у многих растений возникают токи повреждений. Срезы листьев, стебля всегда заряжены отрицательно по отношению к нормальной ткани.

В жизни разных рыб роль электричества различна. Некоторые из них с помощью специальных органов создают в воде мощные электрические разряды. Так, например, пресноводный угорь создает напряжение такой силы, что может отразить нападение противника или парализовать жертву. Электрические органы рыбы состоят из мышц, которые потеряли способность к сокращению. Мышечная ткань служит проводником, а соединительная – изолятором. К органу идут нервы от спинного мозга. А в целом он представляет собой мелкопластинчатую структуру из чередующихся элементов. Угорь имеет от 6000 до 10000 соединенных последователь но элементов, образующих колонку, и около 70 колонок в каждом органе, расположенных вдоль тела.

Ммммммммм

Многие цветы и листья имеют способность закрываться и раскрываться в зависимости от времени и суток. Это обусловлено электрическими сигналами, представляющими собой потенциал действия. Можно заставить листья закрываться с помощью внешних электрических раздражителей. Кроме то го, у многих растений возникают токи повреждений. Срезы листьев, стебля всегда заряжены отрицательно по отношению к нормальной ткани.

В жизни разных рыб роль электричества различна. Некоторые из них с помощью специальных органов создают в воде мощные электрические разряды. Так, например, пресноводный угорь создает напряжение такой силы, что может отразить нападение противника или парализовать жертву. Электрические органы рыбы состоят из мышц, которые потеряли способность к сокращению. Мышечная ткань служит проводником, а соединительная – изолятором. К органу идут нервы от спинного мозга. А в целом он представляет собой мелкопластинчатую структуру из чередующихся элементов. Угорь имеет от 6000 до 10000 соединенных последователь но элементов, образующих колонку, и около 70 колонок в каждом органе, расположенных вдоль тела.

Многие цветы и листья имеют способность закрываться и раскрываться в зависимости от времени и суток. Это обусловлено электрическими сигналами, представляющими собой потенциал действия. Можно заставить листья закрываться с помощью внешних электрических раздражителей. Кроме то го, у многих растений возникают токи повреждений. Срезы листьев, стебля всегда заряжены отрицательно по отношению к нормальной ткани.

В жизни разных рыб роль электричества различна. Некоторые из них с помощью специальных органов создают в воде мощные электрические разряды. Так, например, пресноводный угорь создает напряжение такой силы, что может отразить нападение противника или парализовать жертву. Электрические органы рыбы состоят из мышц, которые потеряли способность к сокращению. Мышечная ткань служит проводником, а соединительная – изолятором. К органу идут нервы от спинного мозга. А в целом он представляет собой мелкопластинчатую структуру из чередующихся элементов. Угорь имеет от 6000 до 10000 соединенных последователь но элементов, образующих колонку, и около 70 колонок в каждом органе, расположенных вдоль тела.

Многие цветы и листья имеют способность закрываться и раскрываться в зависимости от времени и суток. Это обусловлено электрическими сигналами, представляющими собой потенциал действия. Можно заставить листья закрываться с помощью внешних электрических раздражителей. Кроме то го, у многих растений возникают токи повреждений. Срезы листьев, стебля всегда заряжены отрицательно по отношению к нормальной ткани.

В жизни разных рыб роль электричества различна. Некоторые из них с помощью специальных органов создают в воде мощные электрические разряды. Так, например, пресноводный угорь создает напряжение такой силы, что может отразить нападение противника или парализовать жертву. Электрические органы рыбы состоят из мышц, которые потеряли способность к сокращению. Мышечная ткань служит проводником, а соединительная – изолятором. К органу идут нервы от спинного мозга. А в целом он представляет собой мелкопластинчатую структуру из чередующихся элементов. Угорь имеет от 6000 до 10000 соединенных последователь но элементов, образующих колонку, и около 70 колонок в каждом органе, расположенных вдоль тела.

Многие цветы и листья имеют способность закрываться и раскрываться в зависимости от времени и суток. Это обусловлено электрическими сигналами, представляющими собой потенциал действия. Можно заставить листья закрываться с помощью внешних электрических раздражителей. Кроме то го, у многих растений возникают токи повреждений. Срезы листьев, стебля всегда заряжены отрицательно по отношению к нормальной ткани.

В жизни разных рыб роль электричества различна. Некоторые из них с помощью специальных органов создают в воде мощные электрические разряды. Так, например, пресноводный угорь создает напряжение такой силы, что может отразить нападение противника или парализовать жертву. Электрические органы рыбы состоят из мышц, которые потеряли способность к сокращению. Мышечная ткань служит проводником, а соединительная – изолятором. К органу идут нервы от спинного мозга. А в целом он представляет собой мелкопластинчатую структуру из чередующихся элементов. Угорь имеет от 6000 до 10000 соединенных последователь но элементов, образующих колонку, и около 70 колонок в каждом органе, расположенных вдоль тела.

Многие цветы и листья имеют способность закрываться и раскрываться в зависимости от времени и суток. Это обусловлено электрическими сигналами, представляющими собой потенциал действия. Можно заставить листья закрываться с помощью внешних электрических раздражителей. Кроме то го, у многих растений возникают токи повреждений. Срезы листьев, стебля всегда заряжены отрицательно по отношению к нормальной ткани.

В жизни разных рыб роль электричества различна. Некоторые из них с помощью специальных органов создают в воде мощные электрические разряды. Так, например, пресноводный угорь создает напряжение такой силы, что может отразить нападение противника или парализовать жертву. Электрические органы рыбы состоят из мышц, которые потеряли способность к сокращению. Мышечная ткань служит проводником, а соединительная – изолятором. К органу идут нервы от спинного мозга. А в целом он представляет собой мелкопластинчатую структуру из чередующихся элементов. Угорь имеет от 6000 до 10000 соединенных последователь но элементов, образующих колонку, и около 70 колонок в каждом органе, расположенных вдоль тела.

«Электричествов живых организмах»


Что такое, кем открыто,что собой представляет электричество

Впервые на электрическийзаряд обратил внимание Фалес Милетский. Он провел эксперимент, потер янтарьшерстью, после таких простых движений янтарь стал обладать свойством,притягивать мелкие предметы. Это свойство больше походит не на электрическиезаряды, а на магнетизм. Но в 1600 году Гильберт установил различие между этимидвумя явлениями.

В 1747 - 53 Б. Франклинизложил первую последовательную теорию электрических явлений, окончательноустановил электрическую природу молнии и изобрёл молниеотвод.

Во 2-й половине 18 в.началось количественное изучение электрических и магнитных явлений. Появилисьпервые измерительные приборы - электроскопы различных конструкций,электрометры. Г. Кавендиш (1773) и Ш. Кулон (1785) экспериментально установилизакон взаимодействия неподвижных точечных электрических зарядов (работыКавендиша были опубликованы лишь в 1879). Этот основной закон электростатики(Кулона закон) впервые позволил создать метод измерения электрических зарядовпо силам взаимодействия между ними.

Следующий этап в развитиинауки об Э. связан с открытием в конце 18 в. Л. Гальвани «животногоэлектричества»

Главным ученым в изученииэлектричества и электрических зарядов является Майкл Фарадей. С помощью опытовон доказал, что действия электрических зарядов и токов не зависят от способа ихполучения. Также в 1831 Фарадей открыл индукцию электромагнитную - возбуждениеэлектрического тока в контуре, находящемся в переменном магнитном поле. В 1833 - 34 Фарадей установил законы электролиза; эти егоработы положили начало электрохимии.

И так, что же такоеэлектричество. Электричество - это совокупность явлений, обусловленныхсуществованием, движением и взаимодействием электрически заряженных тел иличастиц. Явление электричество можно встретить почти везде.

К примеру, если сильнопотереть пластмассовую расческу о волосы, то к ней начнут прилипать кусочкибумаги. А если потереть о рукав воздушный шарик, то он прилипнет к стене. Притрении янтаря, пластмассы и ряда других материалов в них возникает электрическийзаряд. Само слово «электрический» происходит от латинского слова electrum,означающего «янтарь».

Откуда же беретсяэлектричество

Все окружающие насобъекты содержат миллионы электрических зарядов, состоящих из частиц,находящихся внутри атомов - основы всей материи. Ядро большинства атомоввключает два вида частиц: нейтроны и протоны. Нейтроны не имеют электрическогозаряда, в то время как протоны несут в себе положительный заряд. Вокруг ядравращаются еще одни частицы - электроны, имеющие отрицательный заряд. Какправило, каждый атом имеет одинаковое количество протонов и электронов, чьиравные по величине, но противоположные заряды уравновешивают друг друга. Врезультате мы не ощущаем никакого заряда, а вещество считается незаряженным.Однако, если мы каким-либо образом нарушим это равновесие, то данный объектбудет обладать общим положительным или отрицательным зарядом в зависимости оттого, каких частиц в нем останется больше - протонов или электронов.

Электрические зарядывлияют друг на друга. Положительный и отрицательный заряды притягиваются друг кдругу, а два отрицательных или два положительных заряда отталкиваются друг отдруга. Если поднести к предмету отрицательно заряженную леску, отрицательныезаряды предмета переместятся на другой его конец, а положительные заряды,наоборот, переместятся поближе к леске. Положительные и отрицательные зарядылески и предмета притянут друг друга, и предмет прилипнет к леске. Этот процессназывается электростатической индукцией, и о предмете говорят, что он попадаетв электростатическое поле лески.

Что такое, кем открыто,что собой представляют живые организмы

Живые организмы - главныйпредмет изучения в биологии. Живые организмы не только вписались в существующиймир, но и изолировали себя от него при помощи специальных барьеров. Среда, вкоторой образовались живые организмы, является пространственно – временнымконтинуумом событий, то есть совокупностью явлений физического мира, котораяопределяется характеристиками и положением Земли и Солнца.

Для удобства рассмотрениявсе организмы распределяются по разным группам и категориям, что составляетбиологическую систему их классификации. Самое общее их деление на ядерные ибезъядерные. По числу составляющих организм клеток их делят на одноклеточные имногоклеточные. Особое место между ними занимают колонии одноклеточных.

На все живые организмы,т.е. на растения и животные действуют абиотические факторы среды (факторынеживой природы), особенно температура, свет и увлажненность. В зависимости от влиянияфакторов неживой природы, растения и животных делят на различные группы и у нихпоявляются приспособленности к влиянию этих абиотических факторов.

Как уже было сказано,живые организмы распределяются на большое количество. Сегодня мы рассмотримживые организмы, на разделе их на теплокровных и хладнокровных:

с постоянной температуройтела (теплокровные);

с непостояннойтемпературой тела (хладнокровные).

Организмы с непостояннойтемпературой тела (рыбы, земноводные, пресмыкающиеся). Организмы с постояннойтемпературой тела (птицы, млекопитающие).

Чем связаны физика иживые организмы

Понимание сущности жизни,ее возникновения и эволюции определяет все будущее человечества на Земле каквида живого. Конечно, в настоящее время накоплен огромный материал,осуществляется его тщательное изучение, особенно в области молекулярнойбиологии и генетики, есть схемы или модели развития, есть даже практическоеклонирование человека.

Более того, биологиясообщает множество интересных и важных подробностей живых организмах, упускаячто-то принципиальное. Само слово «физика», по Аристотелю, означает «физис» - природа. Действительно, вся материя Вселенной, а следовательно мы сами, состоитиз атомов и молекул, для которых уже получены количественные и в целомправильные законы их поведения, в том числе и на квантово-молекулярном уровне.

Тем более, что физикабыла и остается важным фактором общего развития изучения живых организмов вцелом. В этом смысле физика как феномен культуры, а не только как областьзнания, создает наиболее близкое для биологии социокультурное понимание.Вероятно, именно в физическом познании отражены стили мышления.Логико-методологические аспекты познания и самой естественной науки, какизвестно, почти целиком основаны на опыте физических наук.

Поэтому задача научногопознания живого, может быть, и состоит в обосновании возможности примененияфизических моделей и представлений к определению развития природы и обществатакже на основе физических закономерностей и научного анализа получаемых знанийо механизме процессов в живом организме. Как говорил еще 25 лет тому назад М.В.Волькенштейн, «в биологии как науке о живом возможны только два пути: либопризнать невозможным объяснение жизни на основе физики и химии, либо такоеобъяснение возможно и его надо найти, в том числе на основе общихзакономерностей, характеризующих строение и природу материи, вещества и поля».

Электричество в различныхклассах живых организмах

В конце XVIII веказнаменитые ученые Гальвани и Вольта обнаружили электричество у животных.Первыми животными, на которых ученые делали опыт, чтобы подтвердить своеоткрытие, были лягушки. На клетку воздействуют различные факторы внешней среды- раздражители: физические - механические, температурные, электрические;

Электрическая активностьоказалась неотъемлемым свойством живой материи. Электричество генерируетнервные, мышечные и железистые клетки всех живых существ, однако наиболееразвита эта способность у рыб. Рассмотрим явление электричество у теплокровныхживых организмах.

В настоящее время известно,что из 20 тыс. современных видов рыб около 300 способны создавать ииспользовать биоэлектрические поля. По характеру генерируемых разрядов такиерыбы делятся на сильноэлектрические и слабоэлектрические. К первым относятсяпресноводные южноамериканские электрические угри, африканские электрическиесомы и морские электрические скаты. Эти рыбы генерируют очень мощные разряды:угри, например, напряжением до 600 вольт, сомы - 350. Напряжение тока крупныхморских скатов невысоко, поскольку морская вода является хорошим проводником,но сила тока их разрядов, например ската Торпедо, достигает иногда 60 ампер.

Рыбы второго типа,например, мормирус и другие представители отряда клюворылообразных не излучаютотдельных разрядов. Они посылают в воду серии почти непрерывных и ритмичныхсигналов (импульсов) высокой частоты, этого поля проявляется в виде такназываемых силовых линий. Если в электрическое поле попадает объект,отличающийся по своей электропроводности от воды, конфигурация поля изменяется:предметы с большей проводимостью сгущают вокруг себя силовые лилии, а с меньшей- рассредоточивают. Рыбы воспринимают эти изменения с помощью электрическихрецепторов, расположенных у большинства рыб в области головы, и определяютместонахождение объекта. Таким образом эти рыбы осуществляют подлиннуюэлектрическую локацию.

Почти все они охотятсяпреимущественно ночью. Некоторые из них обладают плохим зрением, поэтому впроцессе длительной эволюции и выработался у этих рыб такой совершенный способдля обнаружения на расстоянии пищи, врагов, различных предметов.

Приемы, используемыеэлектрическими рыбами при ловле добычи и обороне от врагов, подсказываютчеловеку технические решения при разработке установок для электролова иотпугивания рыб. Исключительные перспективы открывает моделированиеэлектрических систем локации рыб. В современной подводной локационной техникепока не существует систем поиска и обнаружения, которые работали бы по образцуи подобию электролокаторов, созданных в мастерской природы. Учеными многихстран ведется упорная работа по созданию подобной аппаратуры.

ЗЕМНОВОДНЫЕ

Для изучения протеканияэлектричества в земноводных возмем опыт Гальвани. В своих опытах он использовалзадние лапки лягушки, соединенные с позвоночником. Подвешивая эти препараты намедном крючке к железным перилам балкона, он обратил внимание, что, когдаконечности лягушки раскачивались ветром, их мышцы сокращались при каждомприкосновении к перилам. На основании этого Гальвани пришел к выводу, чтоподергивания лапок были вызваны «животным электричеством», зарождающимся вспинном мозге лягушки и передаваемым по металлическим проводникам (крючку иперилам балкона) к мышцам конечностей. Против этого положения Гальвани о«животном электричестве» выступил физик Александр Вольта. В 1792 г. Вольта повторил опыты Гальвани и установил, что эти явления нельзя считать «животнымэлектричеством». В опыте Гальвани источником тока служил не спинной мозглягушки, а цепь, образованная из разнородных металлов – меди и железа. Вольтабыл прав. Первый опыт Гальвани не доказывал наличия «животного электричества»,но эти исследования привлекли внимание ученых к изучению электрических явленийв живых организмах. В ответ на возражение Вольта Гальвани произвел второй опыт,уже без участия металлов. Конец седалищного нерва он набрасывал стекляннымкрючком на мышцу конечности лягушки – и при этом также наблюдалось сокращениемышцы. В живом организме осуществляется и ионная проводимость.

Образованию и разделениюионов в живом веществе способствует наличие воды в белковой системе. От негозависит диэлектрическая постоянная белковой системы.

Носителями зарядов в этомслучае являются ионы водорода - протоны. Только в живом организме все видыпроводимости реализуются одновременно.

Соотношение между разнымипроводимостями меняется в зависимости от количества воды в белковой системе.Сегодня люди еще не знают всех свойств комплексной электропроводности живоговещества. Но ясно то, что именно от них зависят те принципиально отличныесвойства, которые присущи только живому.

На клетку воздействуютразличные факторы внешней среды - раздражители: физические - механические,температурные, электрические.

С древних пор люди знают, что существуют «электрические» рыбы, например угорь или скат, которые создают разряд, подобный разряду конденсатора. И вот профессор анатомии университета в городе Болонье Луиджи Гальвани (1737—1798) решил выяснить, не обладают ли такой способностью другие животные. В 1780 г. он препарировал мертвую лягушку и вывесил на балкон для просушки лапку этой лягушки на медной проволоке. Ветер раскачивал лапку, и Гальвани заметил, что, прикасаясь к железным перилам, она сокращается, совсем как у живого существа. Из этого Гальвани сделал ошибочный (как потом выяснили) вывод, что мышцы и нервы животных вырабатывают электричество.

Вывод этот был неправилен в случае лягушки. Между тем рыбы, вырабатывающие электричество, причем в немалом количестве, существуют и достаточно распространены. Вот что пишет об этом ученый, специалист в этой области Н. И. Тарасов.

В теплых и тропических морях, в реках Африки и Южной Америки живут несколько десятков видов рыб, способных временами или постоянно испускать электрические разряды разной силы. Своим электрическим током эти рыбы пользуются не только для защиты и нападения, но и для того, чтобы сигнализировать друг другу и обнаруживать заблаговременно препятствия (локации). Электрические органы встречаются только у рыб. Если бы они были у других животных, ученым давно бы это стало известно.

Электрические рыбы существуют на Земле уже миллионы лет. Их останки найдены в очень древних слоях земной коры. На древнегреческих вазах встречаются изображения электрического морского ската - торпедо.

В сочинениях древнегреческих и древнеримских писателей и натуралистов немало упоминаний о чудесной, непонятной силе, которой наделен торпедо. Врачи Древнего Рима держали этих скатов у себя дома в больших аквариумах. Они пытались использовать торпедо для лечения болезней: пациентов заставляли прикасаться к скату, и от ударов электрического тока больные будто бы выздоравливали.

Даже в наше время на побережье Средиземного моря и Атлантическом берегу Пиренейского полуострова пожилые люди бродят иногда по мелководью - надеются излечиться от ревматизма или подагры «целительным» электрическим торпедо.

Электричество у торпедо вырабатывается в особых органах - «электрических батареях». Они находятся между головой и грудными плавниками и состоят из сотен шестигранных столбиков студенистого вещества. Столбики отделены друг от друга плотными перегородочками, к которым подходят нервы. Верхушки и основания столбиков соприкасаются с кожей спины и брюха. Нервы, подходящие к электрическим органам, сильно развиты и имеют внутри «батарей» около полумиллиона окончаний.
За несколько десятков секунд торпедо испускает сотни и тысячи коротких разрядов, идущих потоком от брюха к спине. Напряжение тока у разных видов скатов колеблется от 80 до 300 В при силе тока 7 - 8 А.

В водах наших морей живут некоторые виды колючих скатов - райя, или, как их у нас называют, морские лисицы. Действие электрических органов у этих скатов гораздо слабее, чем у торпедо. Можно предполагать, что слабые, но хорошо развитые электрические органы райя служат им для связи друг с другом и играют роль беспроволочного телеграфа.

Недавно ученые установили, что африканская пресноводная рыбка гимнархус всю жизнь непрерывно испускает слабые, но частые электрические сигналы. Ими гимнархус как бы прощупывает пространство вокруг себя. Он уверенно плавает в мутной воде, среди водорослей и камней, не задевая телом ни за какие препятствия. Такой же способностью наделены и «слаботочные» родственники электрического угря - южноамериканские гимноты и африканская рыбка мормиропс.

В восточной части тихоокеанских тропических вод живет скат дископиге глазчатый. Он занимает как бы промежуточное положение между торпедо и колючими скатами. Питается скат мелкими рачками и легко их добывает, не применяя электрического тока. Его электрические разряды никого не могут убить и, вероятно, служат ему лишь для того, чтобы отгонять от себя хищников.

Электрические органы есть не только у скатов. Тело африканского речного сома - малаптеруруса, обернуто, как шубой, студенистым слоем, в котором образуется электрический ток. На долю электрических органов приходится около четверти веса всего сома. Напряжение разрядов этой рыбы достигает 360 В; оно небезопасно для человека и, конечно, гибельно для рыб.

В Индийском, Тихом и Атлантическом океанах, в Средиземном и Черном морях живут небольшие рыбки, похожие на бычков, - звездочеты. Обычно они лежат на прибрежном дне, подкарауливая проплывающую сверху добычу. Поэтому их глаза, расположенные на верхней стороне головы, смотрят вверх. Отсюда и происходит их название. Некоторые виды звездочетов имеют электрические органы, которые находятся в глазной впадине и служат, вероятно, лишь для сигнализации.

В южноамериканских тропических реках живет электрический угорь. Это серо-синяя змееобразная рыба длиной до 3 м. На долю головы и грудобрюшной части приходится всего 1/5 ее тела, а вдоль 4/5 тела с обеих сторон расположены сложные электрические органы. Они состоят из 6 000 - 7 000 пластинок, отделенных друг от друга тонкой оболочкой и изолированных прокладками из студенистого вещества. Пластинки образуют своего рода батарею, дающую разряд по направлению от хвоста к голове. Ток угря достаточен, чтобы убить в воде рыбу или лягушку. Плохо приходится и людям, купающимся в реке: электрический орган угря дает напряжение в несколько сот вольт. Особенно сильное напряжение тока дает угорь, когда он изгибается дугой так, что жертва находится между его хвостом и головой: получается замкнутое электрическое кольцо.

Электрический разряд угря привлекает других угрей, находящихся поблизости. Этим свойством угрей можно пользоваться и искусственно. Разряжая в воду любой источник электричества, удавалось привлекать целое стадо угрей, надо было только подобрать соответствующее напряжение тока и частоту разрядов.

Подсчитано, что 10 000 угрей могли бы дать энергию для движения электропоезда в течение нескольких минут. Но после этого поезд стоял бы несколько суток, пока угри не восстановили бы свою электрическую энергию

Электричество - достояние не только нашей цивилизации, рыбы научились использовать его задолго до появления людей. Электрический скат, угорь и еще представители более чем 300 видов имеют электрические органы, которые представляют собой видоизмененные мышцы. Эти органы способны генерировать импульсы до 5 киловатт и разность потенциалов до 1200 вольт, что может быть крайне опасно для людей. Рыбы используют эти органы по-разному: для охоты, для привлечения жертв, для навигации и даже для генерации кислорода из воды, чтобы дышать.



Нильский слоник и амазонская рыба-нож используют электрические органы только для навигации, подобно тому, как летучие мыши ориентируются с помощью эхолокации. Они создают вокруг себя слабое электрическое поле и объект, попадающий в него, вызывает искажение, которое зависит от его проводимости. Эти искажения рыбы считывают с помощью электрорецепторов на коже и интерпретируют для построения маршрута. Чем-то напоминает металлоискатель.

Электрические угри - пресноводные рыбы, они способны генерировать самые мощные электрические разряды, конечно, такая мощь используется как оружие для отпугивания хищников и оглушения жертв. Угри стали особенно популярны в Викторианскую эпоху, когда у ученых проснулся интерес к электричеству. Электрический сом , тоже пресноводный обитатель и подобно угрю использует этот орган как оружие. Благодаря электрическим разрядам, который разлагает молекулы воды на кислород и водород, вода вокруг этих рыб обогащена кислородом, что дополнительно привлекает потенциальных жертв. Разряды этих пресноводных хищников опасны для людей, убить может и не убьют, но будет очень больно.



Электрический скат - морской житель, имеет крайне слабое зрение, что компенсирует электрорецепцией, помимо ориентирования электрическими разрядами эти хрящевые рыбы могут убить достаточно крупную жертву. Тоже весьма опасны.

Это лишь самые известные обладатели электрических органов, однако их разнообразие по истине огромно и крайне интересно.

Электрические органы оказались настолько полезны, что за время существования рыб эволюционно возникали независимо 6 раз (согласно последним генетическим исследованиям, опубликованным в Science)! Но, несмотря на это, группы генов, вовлеченные в формирование электроцитов (клеток, отвечающих за генерацию электричества) очень схожи у всех видов, другими словами они использовали те же самые генетические инструменты, чтобы на клеточном уровне на ранних этапах развития преобразовать мышечные клетки в специфические структуры электрического органа. Все мышечные клетки (не только рыб) обладают электрическим потенциалом, и при сокращении можно фиксировать небольшое электрическое напряжение на поверхности тела. Именно эту разность потенциалов измеряют, когда, например, снимают электрокардиограмму . Порядка 100 млн лет назад рыбы научились преумножать этот потенциал, превращая мышечные клетки в гораздо большие по размеру электроциты. Вместе эти клетки способны генерировать весьма мощные заряды.


(Lindsay Block a.k.a. bionic woman)
Подобные исследования имеют и прикладную ценность. Если мы будет понимать, как происходит образование электроцитов на молекулярном уровне, то сможем использовать это в биотехнологии для создания «живых батарей», от которых могут работать бионические протезы и другие медицинские приборы, улучшающие качество жизни людей. Только подумать - электроника, которую запитывает само человеческое тело, и не надо никаких батареек!

Знали ли Вы, что некоторые растения используют электричество, а некоторые виды рыб ориентируются в пространстве и оглушают добычу с помощью электрических органов?

: В издании «Nature» шла речь о том, как в растениях передаются электрические импульсы. В качестве ярких примеров на ум сразу приходят венерина мухоловка и мимоза стыдливая, у которых движение листьев вызывается электричеством. Но существуют и другие примеры.

«Нервная система млекопитающих передает электрические сигналы со скоростью до 100 метров в секунду. Растения живут в более медленном режиме. И хотя у них нет нервной системы, некоторые растения, такие как мимоза стыдливая (Mimosa pudica ) и венерика мухоловка (Dionaea muscipula ), используют электросигналы, провоцирующие быстрое движение листьев. Передача сигнала в этих растениях достигает скорости 3 см в секунду - и эта скорость сопоставима со скоростью нервных импульсов в мышцах . На странице 422 данного выпуска , автор Мусави и его коллеги исследуют интересный и не до конца понятный вопрос о том, как растения генерируют и передают электрические сигналы . Авторы называют два протеина, схожих с глутаматными рецепторами, которые являются важнейшими компонентами процесса индукции электрической волны, провоцируемой ранением листа. Она распространяется на соседние органы, заставляя их усиливать защитные реакции в ответ на потенциальную атаку травоядных».

Кто бы мог подумать, что, срезая лист, можно спровоцировать электрический сигнал? Эксперименты над растением резуховидка Таля продемонстрировали отсутствие реакции при воздействии на лист , однако при поедании листа возникал электрический сигнал, распространяющийся со скоростью 9 см в минуту.

«Передача электрического сигнала была наиболее эффективна в листьях, расположенных непосредственно над или под раненным листом, - отмечается в статье. – Эти листья соединены между собой сосудистым руслом растения, по которому передается вода и органические компоненты, а также отлично передаются сигналы на дальние расстояния» . Полученный сигнал включают в гене защитные компоненты. «Эти невероятные наблюдения отчетливо демонстрируют, что генерация и передача электрического сигнала играет важнейшую роль в инициации защитных реакций в отдаленных объектах при нападении травоядных».

Авторы оригинальной статьи не затрагивали тему эволюции, если не считать предположения о том, что «глубоко законсервированная функция этих генов, возможно , является связующим звеном между восприятием повреждений и периферийными защитными реакциями». Если это так, что эта функция, должно быть «существовала еще до расхождения в развитии животных и растений».

Электрические рыбки : Два новых вида электрических рыб были найдены в бассейне реки Амазонка, однако они оснащены электричеством по-разному. Одна из них, как и большинство остальных электрических рыб, двухфазна (или является источником переменного тока), а другая – монофазна (является источником постоянного тока). В одной из статей издания «Science Daily» рассматривались эволюционные причины, по которым это устроено именно так, и интересно то, что «эти хрупкие рыбки производят импульсы всего в несколько сотен милливольт с помощью органа, который немного выступает из волокнистого хвоста». Этот импульс слишком слаб, чтобы убить жертву, как это делает знаменитый электрический угорь, однако эти импульсы читаются представителями других видов, и используются представителями противоположного пола для общения. Рыбки используют их для «электролокации» в сложной водной среде ночью» . Что касается их эволюции, то эти две рыбы настолько похожи, что их относят к одному виду, и единственным различием является разница в электрической фазе их сигналов.

Существует огромное количество способов получать информацию об окружающем мире: прикосновение, взгляд, звук, запах, а теперь еще и электричество. Мир живой природы – это чудо общения между отдельными организмами и их окружением. Каждый орган чувств тонко сконструирован и несет огромную пользу для организма. Утонченные системы не являются результатом слепых неконтролируемых процессов. Мы верим, что если рассматривать их, как системы, созданные в соответствии с разумным замыслом, это ускорит процесс исследования, поможет искать понимания высшего замысла и имитировать их, чтобы усовершенствовать сферу инженерии. А настоящим препятствием в развитии науки является такое предположение: «О, этот организм эволюционировал только потому, что он эволюционировал». Это усыпляющий подход, обладающий снотворным воздействием.



Поделитесь с друзьями или сохраните для себя:

Загрузка...