Производная от неопределенного интеграла с подынтегральной функции. Простейшие свойства интегралов

Основной задачей дифференциального исчисления является нахождение производной f’(x) или дифференциала df= f’(x) dx функции f(x). В интегральном исчислении решается обратная задача. По заданной функции f(x ) требуется найти такую функцию F(x), что F’(х)= f(x) или dF(x)= F’(x) dx= f(x) dx.

Таким образом, основной задачей интегрального исчисления является восстановление функции F(x) по известной производной (дифференциалу) этой функции. Интегральное исчисление имеет многочисленные приложения в геометрии, механике, физике и технике. Оно дает общий метод нахождения площадей, объемов, центров тяжести и т. д..

Определение. Функция F(x), , называется первообразной для функции f(x) на множестве Х, если она дифференцируема для любого и F’(x)= f(x) или dF(x)= f(x) dx.

Теорема. Любая непрерывная на отрезке [ a; b] функция f(x) имеет на этом отрезке первообразную F(x).

Теорема. Если F 1 (x) и F 2 (x) – две различные первообразные одной и той же функции f(x) на множестве х, то они отличаются друг от друга постоянным слагаемым, т. е. F 2 (x)= F 1 x)+ C, где С – постоянная .

    Неопределенный интеграл, его свойства.

Определение. Совокупность F(x)+ C всех первообразных функции f(x) на множестве Х называется неопределенным интегралом и обозначается:

- (1)

В формуле (1) f(x) dx называется подынтегральным выражением, f(x) – подынтегральной функцией, х – переменной интегрирования, а С – постоянной интегрирования.

Рассмотрим свойства неопределенного интеграла, вытекающие из его определения.

1. Производная из неопределенного интеграла равна подынтегральной функции, дифференциал неопределенного интеграла равен подынтегральному выражению:

и .

2. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

3. Постоянный множитель а (а≠0) можно выносить за знак неопределенного интеграла:

4. Неопределенный интеграл от алгебраической суммы конечного числа функций равен алгебраической сумме интегралов от этих функций:

5. Если F(x) – первообразная функции f(x), то:

6 (инвариантность формул интегрирования). Любая формула интегрирования сохраняет свой вид, если переменную интегрирования заменить любой дифференцируемой функцией этой переменной:

где u – дифференцируемая функция.

    Таблица неопределенных интегралов.

Приведем основные правила интегрирования функций.

Приведем таблицу основных неопределенных интегралов. (Отметим, что здесь, как и в дифференциальном исчислении, буква u может обозначать как независимую переменную (u= x) , так и функцию от независимой переменной (u= u(x)) .)


(n≠-1). (a >0, a≠1). (a≠0). (a≠0). (|u| > |a|). (|u| < |a|).

Интегралы 1 – 17 называют табличными.

Некоторые из приведенных выше формул таблицы интегралов, не имеющие аналога в таблице производных, проверяются дифференцированием их правых частей.

    Замена переменной и интегрирование по частям в неопределенном интеграле.

Интегрирование подстановкой (замена переменной). Пусть требуется вычислить интеграл

, который не является табличным. Суть метода подстановки состоит в том, что в интеграле переменную х заменяют переменной t по формуле x=φ(t), откуда dx=φ’(t) dt.

Теорема. Пусть функция x=φ(t) определена и дифференцируема на некотором множестве Т и пусть Х – множество значений этой функции, на котором определена функция f(x). Тогда если на множестве Х функция f(

Решение интегралов – задача легкая, но только для избранных. Эта статья для тех, кто хочет научиться понимать интегралы, но не знает о них ничего или почти ничего. Интеграл... Зачем он нужен? Как его вычислять? Что такое определенный и неопределенный интегралы?

Если единственное известное вам применение интеграла – доставать крючком в форме значка интеграла что-то полезное из труднодоступных мест, тогда добро пожаловать! Узнайте, как решать простейшие и другие интегралы и почему без этого никак нельзя обойтись в математике.

Изучаем понятие « интеграл»

Интегрирование было известно еще в Древнем Египте. Конечно, не в современном виде, но все же. С тех пор математики написали очень много книг по этой теме. Особенно отличились Ньютон и Лейбниц , но суть вещей не изменилась.

Как понять интегралы с нуля? Никак! Для понимания этой темы все равно понадобятся базовые знания основ математического анализа. Сведения о пределах и производных , необходимые и для понимания интегралов, уже есть у нас в блоге.

Неопределенный интеграл

Пусть у нас есть какая-то функция f(x) .

Неопределенным интегралом функции f(x) называется такая функция F(x) , производная которой равна функции f(x) .

Другими словами интеграл – это производная наоборот или первообразная. Кстати, о том, как вычислять производные, читайте в нашей статье.


Первообразная существует для всех непрерывных функций. Также к первообразной часто прибавляют знак константы, так как производные функций, различающихся на константу, совпадают. Процесс нахождения интеграла называется интегрированием.

Простой пример:

Чтобы постоянно не высчитывать первообразные элементарных функций, их удобно свести в таблицу и пользоваться уже готовыми значениями.

Полная таблица интегралов для студентов


Определенный интеграл

Имея дело с понятием интеграла, мы имеем дело с бесконечно малыми величинами. Интеграл поможет вычислить площадь фигуры, массу неоднородного тела, пройденный при неравномерном движении путь и многое другое. Следует помнить, что интеграл – это сумма бесконечно большого количества бесконечно малых слагаемых.

В качестве примера представим себе график какой-нибудь функции.


Как найти площадь фигуры, ограниченной графиком функции? С помощью интеграла! Разобьем криволинейную трапецию, ограниченную осями координат и графиком функции, на бесконечно малые отрезки. Таким образом фигура окажется разделена на тонкие столбики. Сумма площадей столбиков и будет составлять площадь трапеции. Но помните, что такое вычисление даст примерный результат. Однако чем меньше и уже будут отрезки, тем точнее будет вычисление. Если мы уменьшим их до такой степени, что длина будет стремиться к нулю, то сумма площадей отрезков будет стремиться к площади фигуры. Это и есть определенный интеграл, который записывается так:


Точки а и b называются пределами интегрирования.


« Интеграл»

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Правила вычисления интегралов для чайников

Свойства неопределенного интеграла

Как решить неопределенный интеграл? Здесь мы рассмотрим свойства неопределенного интеграла, которые пригодятся при решении примеров.

  • Производная от интеграла равна подынтегральной функции:

  • Константу можно выносить из-под знака интеграла:

  • Интеграл от суммы равен сумме интегралов. Верно также для разности:

Свойства определенного интеграла

  • Линейность:

  • Знак интеграла изменяется, если поменять местами пределы интегрирования:

  • При любых точках a , b и с :

Мы уже выяснили, что определенный интеграл – это предел суммы. Но как получить конкретное значение при решении примера? Для этого существует формула Ньютона-Лейбница:

Примеры решения интегралов

Ниже рассмотрим неопределенный интеграл и примеры с решением. Предлагаем самостоятельно разобраться в тонкостях решения, а если что-то непонятно, задавайте вопросы в комментариях.


Для закрепления материала посмотрите видео о том, как решаются интегралы на практике. Не отчаиваетесь, если интеграл не дается сразу. Обратитесь в профессиональный сервис для студентов, и любой тройной или криволинейный интеграл по замкнутой поверхности станет вам по силам.

Данные свойства используются для осуществления преобразований интеграла с целью его приведения к одному из элементарных интегралов и дальнейшему вычислению.

1. Производная неопределенного интеграла равна подынтегральной функции:

2. Дифференциал неопределенного интеграла равен подынтегральному выражению:

3. Неопределенный интеграл от дифференциала некоторой функции равен сумме этой функции и произвольной постоянной:

4. Постоянный множитель можно выносить за знак интеграла:

Причем a ≠ 0

5. Интеграл суммы (разности) равен сумме (разности) интегралов:

6. Свойство является комбинацией свойств 4 и 5:

Причем a ≠ 0 ˄ b ≠ 0

7. Свойство инвариантности неопределенного интеграла:

Если , то

8. Свойство:

Если , то

Фактически данное свойство представляет собой частный случай интегрирования при помощи метода замены переменной , который более подробно рассмотрен в следующем разделе.

Рассмотрим пример:

Сначала мы применили свойство 5, затем свойство 4, затем воспользовались таблицей первообразных и получили результат.

Алгоритм нашего онлайн калькулятора интегралов поддерживает все перечисленные выше свойства и без труда найдет подробное решение для вашего интеграла.

Первообразная функция и неопределённый интеграл

Факт 1. Интегрирование - действие, обратное дифференцированию, а именно, восстановление функции по известной производной этой функции. Восстановленная таким образом функция F (x ) называется первообразной для функции f (x ).

Определение 1. Функция F (x f (x ) на некотором промежутке X , если для всех значений x из этого промежутка выполняется равенство F "(x )=f (x ), то есть данная функция f (x ) является производной от первообразной функции F (x ). .

Например, функция F (x ) = sin x является первообразной для функции f (x ) = cos x на всей числовой прямой, так как при любом значении икса (sin x )" = (cos x ) .

Определение 2. Неопределённым интегралом функции f (x ) называется совокупность всех её первообразных . При этом употребляется запись

f (x )dx

,

где знак называется знаком интеграла, функция f (x ) – подынтегральной функцией, а f (x )dx – подынтегральным выражением.

Таким образом, если F (x ) – какая-нибудь первообразная для f (x ) , то

f (x )dx = F (x ) +C

где C - произвольная постоянная (константа).

Для понимания смысла множества первообразных функции как неопределённого интеграла уместна следующая аналогия. Пусть есть дверь (традиционная деревянная дверь). Её функция - "быть дверью". А из чего сделана дверь? Из дерева. Значит, множеством первообразных подынтегральной функции "быть дверью", то есть её неопределённым интегралом, является функция "быть деревом + С", где С - константа, которая в данном контексте может обозначать, например, породу дерева. Подобно тому, как дверь сделана из дерева при помощи некоторых инструментов, производная функции "сделана" из первообразной функции при помощи формулы, которую мы узнали, изучая производную .

Тогда таблица функций распространённых предметов и соответствующих им первообразных ("быть дверью" - "быть деревом", "быть ложкой" - "быть металлом" и др.) аналогична таблице основных неопределённых интегралов, которая будет приведена чуть ниже. В таблице неопределённых интегралов перечисляются распространённые функции с указанием первообразных, из которых "сделаны" эти функции. В части задач на нахождение неопределённого интеграла даны такие подынтегральные функции, которые без особых услилий могут быть проинтегрированы непосредственно, то есть по таблице неопределённых интегралов. В задачах посложнее подынтегральную функцию нужно предварительно преобразовать так, чтобы можно было использовать табличные интегралы.

Факт 2. Восстанавливая функцию как первообразную, мы должны учитывать произвольную постоянную (константу) C , а чтобы не писать список первообразной с различными константами от 1 до бесконечности, нужно записывать множество первообразных с произвольной константой C , например, так: 5x ³+С . Итак, произвольная постоянная (константа) входит в выражение первообразной, поскольку первообразная может быть функцией, например, 5x ³+4 или 5x ³+3 и при дифференцировании 4 или 3, или любая другая константа обращаются в нуль.

Поставим задачу интегрирования: для данной функции f (x ) найти такую функцию F (x ), производная которой равна f (x ).

Пример 1. Найти множество первообразных функции

Решение. Для данной функции первообразной является функция

Функция F (x ) называется первообразной для функции f (x ), если производная F (x ) равна f (x ), или, что одно и то же, дифференциал F (x ) равен f (x ) dx , т.е.

(2)

Следовательно, функция - первообразная для функции . Однако она не является единственной первообразной для . Ими служат также функции

где С – произвольная постоянная. В этом можно убедиться дифференцированием.

Таким образом, если для функции существует одна первообразная, то для неё существует бесконечное множество первообразных, отличающихся на постоянное слагаемое. Все первообразные для функции записываются в приведённом выше виде. Это вытекает из следующей теоремы.

Теорема (формальное изложение факта 2). Если F (x ) – первообразная для функции f (x ) на некотором промежутке Х , то любая другая первообразная для f (x ) на том же промежутке может быть представлена в виде F (x ) + C , где С – произвольная постоянная.

В следующем примере уже обращаемся к таблице интегралов, которая будет дана в параграфе 3, после свойств неопределённого интеграла. Делаем это до ознакомления со всей таблицей, чтобы была понятна суть вышеизложенного. А после таблицы и свойств будем пользоваться ими при интегрировании во всей полносте.

Пример 2. Найти множества первообразных функций:

Решение. Находим множества первообразных функций, из которых "сделаны" данные функции. При упоминании формул из таблицы интегралов пока просто примите, что там есть такие формулы, а полностью саму таблицу неопределённых интегралов мы изучим чуть дальше.

1) Применяя формулу (7) из таблицы интегралов при n = 3, получим

2) Используя формулу (10) из таблицы интегралов при n = 1/3, имеем

3) Так как

то по формуле (7) при n = -1/4 найдём

Под знаком интеграла пишут не саму функцию f , а её произведение на дифференциал dx . Это делается прежде всего для того, чтобы указать, по какой переменной ищется первообразная. Например,

, ;

здесь в обоих случаях подынтегральная функция равна , но её неопределённые интегралы в рассмотренных случаях оказываются различными. В первом случае эта функция рассматривается как функция от переменной x , а во втором - как функция от z .

Процесс нахождения неопределённого интеграла функции называется интегрированием этой функции.

Геометрический смысл неопределённого интеграла

Пусть требуется найти кривую y=F(x) и мы уже знаем,что тангенс угла наклона касательной в каждой её точке есть заданная функция f(x) абсциссы этой точки.

Согласно геометрическому смыслу производной, тангенс угла наклона касательной в данной точке кривой y=F(x) равен значению производной F"(x) . Значит, нужно найти такую функцию F(x) , для которой F"(x)=f(x) . Требуемая в задаче функция F(x) является первообразной от f(x) . Условию задачи удовлетворяет не одна кривая, а семейство кривых. y=F(x) - одна из таких кривых, а всякая другая кривая может быть получена из неё параллельным переносом вдоль оси Oy .

Назовём график первообразной функции от f(x) интегральной кривой. Если F"(x)=f(x) , то график функции y=F(x) есть интегральная кривая.

Факт 3. Неопределённый интеграл геометрически представлен семеством всех интегральных кривых , как на рисунке ниже. Удалённость каждой кривой от начала координат определяется произвольной постоянной (константой) интегрирования C .

Свойства неопределённого интеграла

Факт 4. Теорема 1. Производная неопределённого интеграла равна подынтегральной функции, а его дифференциал – подынтегральному выражению.

Факт 5. Теорема 2. Неопределённый интеграл от дифференциала функции f (x ) равен функции f (x ) с точностью до постоянного слагаемого , т.е.

(3)

Теоремы 1 и 2 показывают, что дифференцирование и интегрирование являются взаимно-обратными операциями.

Факт 6. Теорема 3. Постоянный множитель в подынтегральном выражении можно выносить за знак неопределённого интеграла , т.е.

Пусть функция y = f (x ) определена на отрезке [a , b ], a < b . Выполним следующие операции:

1) разобьем [a , b ] точками a = x 0 < x 1 < ... < x i - 1 < x i < ... < x n = b на n частичных отрезков [x 0 , x 1 ], [x 1 , x 2 ], ..., [x i - 1 , x i ], ..., [x n - 1 , x n ];

2) в каждом из частичных отрезков [x i - 1 , x i ], i = 1, 2, ... n , выберем произвольную точку и вычислим значение функции в этой точке: f (z i ) ;

3) найдем произведения f (z i ) · Δx i , где – длина частичного отрезка [x i - 1 , x i ], i = 1, 2, ... n ;

4) составиминтегральную сумму функции y = f (x ) на отрезке [a , b ]:

С геометрической точки зрения эта сумма σ представляет собой сумму площадей прямоугольников, основания которых – частичные отрезки [x 0 , x 1 ], [x 1 , x 2 ], ..., [x i - 1 , x i ], ..., [x n - 1 , x n ], а высоты равны f (z 1 ) , f (z 2 ), ..., f (z n ) соответственно (рис. 1). Обозначим через λ длину наибольшего частичного отрезка:

5) найдем предел интегральной суммы, когда λ → 0.

Определение. Если существует конечный предел интегральной суммы (1) и он не зависит ни от способа разбиения отрезка [a , b ] на частичные отрезки, ни от выбора точек z i в них, то этот предел называется определенным интегралом от функции y = f (x ) на отрезке [a , b ] и обозначается

Таким образом,

В этом случае функция f (x ) называется интегрируемой на [a , b ]. Числа a и b называются соответственно нижним и верхним пределами интегрирования, f (x ) – подынтегральной функцией, f (x ) dx – подынтегральным выражением, x – переменной интегрирования; отрезок [a , b ] называется промежутком интегрирования.

Теорема 1. Если функция y = f (x ) непрерывна на отрезке [a , b ], то она интегрируема на этом отрезке.

Определенный интеграл с одинаковыми пределами интегрирования равен нулю:

Если a > b , то, по определению, полагаем

2. Геометрический смысл определенного интеграла

Пусть на отрезке [a , b ] задана непрерывная неотрицательная функция y = f (x ) . Криволинейной трапецией называется фигура, ограниченная сверху графиком функции y = f (x ) , снизу – осью Ох, слева и справа – прямыми x = a и x = b (рис. 2).

Определенный интеграл от неотрицательной функции y = f (x ) с геометрической точки зрения равен площади криволинейной трапеции, ограниченной сверху графиком функции y = f (x ) , слева и справа – отрезками прямых x = a и x = b , снизу – отрезком оси Ох.

3. Основные свойства определенного интеграла

1. Значение определенного интеграла не зависит от обозначения переменной интегрирования:

2. Постоянный множитель можно выносить за знак определенного интеграла:

3. Определенный интеграл от алгебраической суммы двух функций равен алгебраической сумме определенных интегралов от этих функций:

4.Если функция y = f (x ) интегрируема на [a , b ] и a < b < c , то

5. (теорема о среднем) . Если функция y = f (x ) непрерывна на отрезке [a , b ], то на этом отрезке существует точка , такая, что

4. Формула Ньютона–Лейбница

Теорема 2. Если функция y = f (x ) непрерывна на отрезке [a , b ] и F (x ) – какая-либо ее первообразная на этом отрезке, то справедлива следующая формула:

которая называется формулой Ньютона–Лейбница. Разность F (b ) - F (a ) принято записывать следующим образом:

где символ называется знаком двойной подстановки.

Таким образом, формулу (2) можно записать в виде:

Пример 1. Вычислить интеграл

Решение. Для подынтегральной функции f (x ) = x 2 произвольная первообразная имеет вид

Так как в формуле Ньютона-Лейбница можно использовать любую первообразную, то для вычисления интеграла возьмем первообразную, имеющую наиболее простой вид:

5. Замена переменной в определенном интеграле

Теорема 3. Пусть функция y = f (x ) непрерывна на отрезке [a , b ]. Если:

1) функция x = φ (t ) и ее производная φ "(t ) непрерывны при ;

2) множеством значений функции x = φ (t ) при является отрезок [a , b ];

3) φ (a ) = a , φ (b ) = b , то справедлива формула

которая называется формулой замены переменной в определенном интеграле.

В отличие от неопределенного интеграла, в данном случае нет необходимости возвращаться к исходной переменной интегрирования – достаточно лишь найти новые пределы интегрирования α и β (для этого надо решить относительно переменной t уравнения φ (t ) = a и φ (t ) = b ).

Вместо подстановки x = φ (t ) можно использовать подстановку t = g (x ) . В этом случае нахождение новых пределов интегрирования по переменной t упрощается: α = g (a ) , β = g (b ) .

Пример 2 . Вычислить интеграл

Решение. Введем новую переменную по формуле . Возведя в квадрат обе части равенства , получим 1 + x = t 2 , откуда x = t 2 - 1, dx = (t 2 - 1)"dt = 2tdt . Находим новые пределы интегрирования. Для этого в формулу подставим старые пределы x = 3 и x = 8. Получим: , откуда t = 2 и α = 2; , откуда t = 3 и β = 3. Итак,

Пример 3. Вычислить

Решение. Пусть u = ln x , тогда , v = x . По формуле (4)



Поделитесь с друзьями или сохраните для себя:

Загрузка...