Современная торпеда: что есть и что будет. Об облике современных торпед подводных лодок Торпеды с реактивным двигателем

Первые торпеды отличались от современных не меньше, чем колесный пароходофрегат от атомного авианосца. В 1866 году «скат» нес 18 кг взрывчатки на расстояние 200 м со скоростью около 6 узлов. Точность стрельбы была ниже всякой критики. К 1868 году применение соосных винтов, вращающихся в разные стороны, позволило уменьшить рысканье торпеды в горизонтальной плоскости, а установка маятникового механизма управления рулями – стабилизировать глубину хода.

К 1876 году детище Уайтхеда плыло уже со скоростью около 20 узлов и преодолевало расстояние в два кабельтова (около 370 м). Через два года торпеды сказали свое слово на поле брани: русские моряки «самодвижущимися минами» отправили на дно батумского рейда турецкий сторожевой пароход «Интибах».

Торпедный отсек субмарины
Если не знать, какой разрушительной силой обладают лежащие на стеллажах «рыбки», то можно и не догадаться. Слева – два торпедных аппарата с открытыми крышками. Верхний из них пока не заряжен.

Дальнейшая эволюция торпедного оружия до середины XX века сводится к увеличению заряда, дальности, скорости и способности торпед держаться на курсе. Принципиально важно, что до поры общая идеология оружия оставалась ровно той же, что и в 1866 году: торпеда должна была попасть в борт цели и взорваться при ударе.

Прямоидущие торпеды сохраняются на вооружении и поныне, периодически находя применение в ходе всяческих конфликтов. Именно ими был в 1982 году потоплен аргентинский крейсер «Генерал Бельграно», ставший самой известной жертвой Фолклендской войны.

Английская АПЛ Conqueror тогда выпустила по крейсеру три торпеды Mk-VIII, состоящие на вооружении Королевского флота с середины 1920-х годов. Сочетание атомной субмарины и допотопных торпед выглядит забавно, но не будем забывать, что и крейсер постройки 1938 года к 1982-му имел скорее музейную, нежели военную ценность.

Революцию в торпедном деле произвело появление в середине XX века систем самонаведения и телеуправления, а также неконтактных взрывателей.

Современные системы самонаведения (ССН) делятся на пассивные – «ловящие» физические поля, создаваемые целью, и активные – ищущие цель обычно при помощи гидролокации. В первом случае речь идет чаще всего об акустическом поле – шуме винтов и механизмов.

Несколько особняком стоят системы самонаведения, лоцирующие кильватерный след корабля. Сохраняющиеся в нем многочисленные мелкие пузырьки воздуха меняют акустические свойства воды, и это изменение надежно «ловится» гидролокатором торпеды далеко за кормой прошедшего корабля. Зафиксировав след, торпеда поворачивает в сторону движения цели и ведет поиск, двигаясь «змейкой». Лоцирование кильватерного следа, основной способ самонаведения торпед в российском флоте, считается в принципе надежным. Правда, торпеда, вынужденная догонять цель, тратит на это время и драгоценные кабельтовы пути. А подлодке, чтобы выстрелить «по следу», приходится подбираться к цели ближе, чем это в принципе позволялось бы дальностью торпеды. Шансы на выживание при этом не увеличиваются.

Вторым важнейшим нововведением стали распространившиеся во второй половине XX века системы телеуправления торпедами. Как правило, управление торпедой осуществляется по кабелю, разматываемому по мере движения.

Сочетание управляемости с неконтактным взрывателем позволило радикально изменить саму идеологию применения торпед – теперь они ориентированы на то, чтобы нырнуть под киль атакуемой цели и взорваться там.

Противоминные сети
Эскадренный броненосец «Император Александр II» во время испытаний противоминной сети системы Булливанта. Крон-штадт, 1891 год

Поймай ее сетью!

Первые попытки оградить корабли от новой угрозы были предприняты в считанные годы после ее появления. Концепция выглядела незатейливо: на борту корабля крепились откидные выстрелы, с которых свешивалась вниз стальная сеть, останавливающая торпеды.

На испытаниях новинки в Англии в 1874 году сеть благополучно отразила все атаки. Аналогичные испытания, проведенные в России десятилетием позже, дали результат чуть похуже: сеть, рассчитанная на сопротивление на разрыв в 2,5 т, выдержала пять из восьми выстрелов, однако три пробившие ее торпеды запутались винтами и все равно были остановлены.

Наиболее яркие эпизоды биографии противоторпедных сетей относятся к русско-японской войне. Однако к началу Первой мировой скорость торпед перевалила за 40 узлов, а заряд достиг сотни килограммов. Для преодоления заграждений на торпеды начали устанавливать специальные резаки. В мае 1915 года английский броненосец «Триумф» (Triumph), обстреливавший турецкие позиции у входа в Дарданеллы, был, несмотря на опущенные сети, потоплен единственным выстрелом с немецкой подлодки – торпеда пробила защиту. К 1916 году опускаемая «кольчужка» воспринималась скорее как бесполезный груз, нежели как защита.

(IMG:http://topwar.ru/uploads/posts/2011-04/1303281376_2712117058_5c8c8fd7bf_o_1300783343_full.jpg) Отгородиться стенкой

Энергия взрывной волны быстро убывает с расстоянием. Логично было бы поставить на некотором расстоянии от наружной обшивки корабля броневую переборку. Если она выдержит воздействие взрывной волны, то повреждения корабля ограничатся затоплением одногодвух отсеков, а энергетическая установка, погреба боеприпасов и прочие уязвимые места не пострадают.

Видимо, первым идею конструктивной ПТЗ выдвинул бывший главный строитель английского флота Э.Рид в 1884 году, но его мысль не была поддержана Адмиралтейством. Англичане предпочли в проектах своих кораблей следовать традиционному на тот момент пути: делить корпус на большое число водонепроницаемых отсеков и прикрывать машинно-котельные отделения расположенными по бортам угольными ямами.
Такая система защиты корабля от артиллерийских снарядов неоднократно испытывалась в конце XIX века и в целом выглядела эффективной: сложенный в ямах уголь исправно «улавливал» снаряды и не загорался.

Система противоторпедных переборок была впервые реализована во французском флоте на экспериментальном броненосце «Анри IV», построенном по проекту Э.Бертена. Суть замысла сводилась к тому, чтобы плавно закруглить скосы двух броневых палуб вниз, параллельно борту и на некотором расстоянии от него. Кон-струкция Бертена не побывала на войне, и вероятно, это было к лучшему – построенный по этой схеме кессон, имитировавший отсек «Анри», был при испытаниях разрушен взрывом прикрепленного к обшивке торпедного заряда.

В упрощенном виде этот подход был реализован на русском броненосце «Цесаревич», строившемся во Франции и по французскому же проекту, а также на ЭБР типа «Бородино», копировавших тот же проект. Корабли получили в качестве противоторпедной защиты продольную броневую переборку толщиной 102 мм, отстоявшую от наружной обшивки на 2м. «Цесаревичу» это не слишком помогло– получив японскую торпеду при нападении японцев на Порт-Артур, корабль провел в ремонте несколько месяцев.

Английский флот полагался на угольные ямы примерно до строительства «Дредноута». Однако попытка испытать данную защиту в 1904 году закончилась провалом. В качестве «подопытного кролика» выступил древний броненосный таран «Бельайл». Снаружи к его корпусу пристроили коффердам шириной 0,6 м, заполненный целлюлозой, а между наружной обшивкой и котельным отделением возвели шесть продольных переборок, пространство между которыми заполнили углем. Взрыв 457-мм торпеды проделал в этой конструкции дыру 2,5х3,5 м, снес коффердам, разрушил все переборки, кроме последней, и вспучил палубу. В результате «Дредноут» получил броневые экраны, прикрывавшие погреба башен, а последующие линкоры строились уже с полноразмерными продольными переборками по длине корпуса– конструкторская мысль пришла к единому решению.

Постепенно конструкция ПТЗ усложнялась, а ее размеры увеличивались. Боевой опыт показал, что главное в конструктивной защите – глубина, то есть расстояние от места взрыва до прикрываемых защитой корабельных внутренностей. На смену одиночной переборке пришли затейливые конструкции, состоявшие из нескольких отсеков. Чтобы отодвинуть «эпицентр» взрыва как можно дальше, широко применялись були – продольные наделки, монтируемые на корпусе ниже ватерлинии.

Одной из самых мощных считается ПТЗ французских линкоров типа «Ришелье», состоявшая из противоторпедной инескольких разделительных переборок, образовывавших четыре ряда защитных отсеков. Наружный, имевший почти 2-метровую ширину, заполнялся пенорезиновым наполнителем. Затем следовал ряд пустых отсеков, за ним – топливные баки, затем еще один ряд пустых отсеков, предназначенный для сбора разлившегося при взрыве топлива. Только после этого взрывной волне предстояло наткнуться на противоторпедную переборку, после которой следовал еще один ряд пустых отсеков – чтобы уж точно поймать все просочившееся. На однотипном линкоре «Жан Бар» ПТЗ была усилена булями, в результате чего ее общая глубина достигла 9,45 м.

На американских линкорах типа «Норт Кэролайн» систему ПТЗ образовывали буль и пять переборок – правда, не из брони, а из обычной судостроительной стали. Полость буля и следующий за ним отсек были пустыми, два следующих отсека заполнялись топливом или забортной водой. Последний, внутренний, отсек снова был пустым.
Помимо защиты от подводных взрывов многочисленные отсеки можно было использовать для выравнивания крена, затапливая их по мере надобности.

Излишне говорить о том, что такой расход пространства и водоизмещения был роскошью, допустимой только на самых крупных кораблях. Следующая серия американских линкоров (South Dacota) получила котлотурбинную установку иных габаритов – короче и шире. А увеличить ширину корпуса было уже невозможно – иначе корабли не прошли бы через Панамский канал. Итогом стало уменьшение глубины ПТЗ.

Несмотря на все ухищрения, защита все время отставала от вооружения. ПТЗ тех же американских линкоров рассчитывалась на торпеду с 317-килограммовым зарядом, однако уже после их постройки у японцев появились торпеды с зарядами в 400 кг ТНТ и больше. В результате командир «Норт Кэролайн», получившей осенью 1942 года попадание японской 533-мм торпеды, в своем рапорте честно писал, что никогда не считал подводную защиту корабля адекватной современной торпеде. Впрочем, поврежденный линкор тогда остался на плаву.

Не дать дойти до цели

Появление ядерного оружия и управляемых ракет радикально изменило взгляды на вооружение и защиту боевого корабля. Флот расстался с многобашенными линкорами. На новых кораблях место орудийных башен и броневых поясов заняли ракетные комплексы и локаторы. Главным стало не выдержать попадание вражеского снаряда, но просто его не допустить.

Сходным образом поменялся подход к противоторпедной защите – були с переборками хоть и не исчезли совершенно, но явно отошли на задний план. Задача сегодняшней ПТЗ – сбить торпеду справильного курса, запутав ее систему самонаведения, либо просто уничтожить на подходе к цели.

«Джентльменский набор» современной ПТЗ включает несколько общепринятых устройств. Важнейшие из них – средства гидроакустического противодействия, как буксируемые, так и выстреливаемые. Плавающее в воде устройство создает акустическое поле, попросту говоря – шумит. Шум от средств ГПД может сбивать систему самонаведения с толку, либо имитируя шумы корабля (значительно громче его самого), либо «забивая» вражескую гидроакустику помехами. Так, американская система AN/SLQ-25 «Никси» включает буксируемые со скоростью до 25 узлов отводители торпед и шестиствольные пусковые установки для стрельбы средствами ГПД. К этому прилагается автоматика, определяющая параметры атакующих торпед, генераторы сигналов, собственные гидроакустические комплексы и много чего еще.

В последние годы появляются сообщения о разработке системы AN/WSQ-11, которая должна обеспечить не только подавление устройств самонаведения, но и поражение противоторпедами на дистанции от 100 до 2000 м). Небольшая противоторпеда (калибр 152 мм, длина 2,7 м, масса 90 кг, дальность хода 2–3 км) оснащена паротурбинной энергоустановкой.

Испытания опытных образцов проводятся с 2004 года, а принятие на вооружение ожидается в 2012-м. Есть также сведения о разработке суперкавитирующей противоторпеды, способной развивать скорость до 200 узлов, аналогично российскому «Шквалу», но рассказать о ней практически нечего – все бережно укрыто завесой секретности.

Разработки других стран выглядят похоже. Французские и итальянские авианосцы оснащены системой ПТЗ SLAT совместной разработки. Основным элементом системы является буксируемая антенна, включающая 42 излучающих элемента и побортно устанавливаемые 12-трубные аппараты для стрельбы самоходными или дрейфующими средствами ГПД «Спартакус». Известно также о разработке активной системы, стреляющей противоторпедами.

Примечательно, что в череде сообщений о различных разработках пока не появлялось информации о чем-то, способном сбить с курса торпеду, идущую по кильватерному следу корабля.

На вооружении российского флота кнастоящему времени находятся противоторпедные комплексы «Удав-1М» и «Пакет-Э/НК». Первый из них предназначен для поражения или отведения торпед, атакующих корабль. Комплекс может стрелять снарядами двух типов. Снаряд-отводитель 111СО2 предназначен для отведения торпеды от цели.

Заградительно-глубинные снаряды 111СЗГ позволяют сформировать своего рода минное поле на пути атакующей торпеды. При этом вероятность поражения прямоидущей торпеды одним залпом составляет 90%, а самонаводящейся – около 76. Комплекс «Пакет» предназначен для уничтожения атакующих надводный корабль торпед противоторпедами. В открытых источниках говорится о том, что его применение снижает вероятность поражения корабля торпедой примерно в 3–3,5 раза, но кажется вероятным, что в боевых условиях эта цифра не проверялась, как, впрочем, и все остальные.

Парогазовые торпеды, впервые изготовленные во второй половине XIX столетия, стали активно использоваться с появлением подводных лодок. Особенно преуспели в этом германские подводники, потопившие только за 1915 год 317 торговых и военных судов с общим тоннажем 772 тыс. тонн. В межвоенные годы появились усовершенствованные варианты, которые могли применяться самолетами. В годы Второй мировой войны торпедоносцы сыграли огромную роль в противоборстве флотов воюющих сторон.

Современные торпеды оснащены системами самонаведения и могут оснащаться боеголовками с различным зарядом, вплоть до атомного. На них продолжают использоваться парогазовые двигатели, созданные с учетом последних достижений техники.

История создания

Идея атаки вражеских кораблей самодвижущимися снарядами возникла в XV веке. Первым задокументированным фактом стали идеи итальянского инженера да Фонтана. Однако технический уровень того времени не позволял создать рабочих образцов. В XIX веке идею доработал Роберт Фултон, который и ввел в использование термин «торпеда».

В 1865 году проект оружия (или как тогда называли «самодвижущегося торпедо») предложил российский изобретатель И.Ф. Александровский. Торпеда оборудовалась двигателем, работающим на сжатом воздухе.

Для управления по глубине использовались горизонтальные рули. Спустя год аналогичный проект предложил англичанин Роберт Уайтхед, который оказался проворнее российского коллеги и запатентовал свою разработку.

Именно Уайтхед начал использовать гиростат и соосную гребную установку.

Первым государством, взявшим на вооружение торпеду, стала Австро-Венгрия в 1871 году.

В течение последующих 3 лет торпеды поступили в арсеналы многих морских держав, в том числе и России.

Устройство

Торпеда представляет собой самоходный снаряд, движущийся в толще воды под воздействием энергии собственной силовой установки. Все узлы расположены внутри удлиненного стального корпуса цилиндрического сечения.

В головной части корпуса размещен заряд взрывчатого вещества с приборами, обеспечивающими подрыв боеголовки.

В следующем отсеке расположен запас топлива, вид которого зависит от типа установленного ближе к корме двигателя. В хвостовой части установлен гребной винт, рули глубины и направления, которые могут управляться автоматически или дистанционно.


Принцип работы силовой установки парогазовой торпеды основан на использовании энергии парогазовой смеси в поршневой многоцилиндровой машине или турбине. Возможно использование жидкого топлива (в основном керосин, реже спирт), а также твердого (пороховой заряд или любое вещество, выделяющее значительный объем газа при контакте с водой).

При использовании жидкого топлива на борту имеется запас окислителя и воды.

Горение рабочей смеси происходит в специальном генераторе.

Поскольку при сгорании смеси температура достигает 3,5-4,0 тыс. градусов, то имеется риск разрушения корпуса камеры сгорания. Поэтому в камеру подается вода, снижающая температуру горения до 800°C и ниже.

Основным недостатком ранних торпед с парогазовой силовой установкой стал хорошо различимый след выхлопных газов. Это стало причиной появления торпед с электрической установкой. Позднее в качестве окислителя стали использовать чистый кислород или концентрированную перекись водорода. Благодаря этому отработавшие газы полностью растворяются в воде и след от движения практически отсутствует.

При использовании твердого топлива, состоящего из одного или нескольких компонентов, не требуется использование окислителя. Благодаря этому факту снижается вес торпеды, а более интенсивное газообразование твердого топлива обеспечивает увеличение скорости и дальности хода.

В качестве двигателя применяются паротурбинные установки, оснащенные планетарными редукторами для снижения частоты вращения вала гребных винтов.

Принцип работы

На торпедах типа 53-39 перед применением следует вручную установить параметры глубины движения, курса и примерной дистанции до цели. После этого необходимо открыть предохранительный кран, установленный на магистрали подачи сжатого воздуха в камеру сгорания.

При прохождении торпедой трубы пускового аппарата происходит автоматическое открытие главного крана, и начинается подача воздуха непосредственно в камеру.

Одновременно начинается распыл керосина через форсунку и розжиг образовавшейся смеси при помощи электрического прибора. Установленная в камере дополнительная форсунка подает пресную воду из бортового резервуара. Смесь подается в поршневой двигатель, который начинает раскручивать соосные гребные винты.

Например, в германских парогазовых торпедах G7a использован 4-цилиндровый двигатель, оборудованный редуктором для привода соосных винтов, вращающихся в противоположном направлении. Валы полые, установлены один внутри другого. Применение соосных винтов позволяет уравновешивать отклоняющие моменты и поддерживается заданный курс движения.

Часть воздуха при пуске подается на механизм раскрутки гироскопа.

После начала контакта головной части с потоком воды начинается раскрутка крыльчатки предохранителя боевого отделения. Предохранитель оснащен прибором задержки, обеспечивающим взвод ударника в боевое положение через несколько секунд, за которые торпеда отойдет от места пуска на 30-200 м.

Отклонение торпеды от заданного курса корректируется ротором гироскопа, воздействующим на систему тяг, связанную с исполнительной машиной рулей направления. Вместо тяг могут использоваться электрические приводы. Ошибка в глубине хода определяется механизмом, уравновешивающим усилие пружины давлением столба жидкости (гидростат). Механизм связан с исполнительной машинкой руля глубины.


При ударе боевой части о корпус корабля происходит разрушение стержнями ударника капсюлей, которые вызывают детонацию боевой части. Немецкие торпеды G7a поздних серий оснащались дополнительным магнитным детонатором, срабатывавшим при достижении определенной напряженности поля. Аналогичный взрыватель использовался с 1942 года на советских торпедах 53-38У.

Сравнительные характеристики некоторых торпед подводных лодок периода Второй мировой войны приведены ниже.

Параметр G7a 53-39 Mk.15mod 0 Тип 93
Производитель Германия СССР США Япония
Диаметр корпуса, мм 533 533 533 610
Вес заряда, кг 280 317 224 610
Тип ВВ Тротил ТГА Тротил -
Предельная дальность хода, м до 12500 до 10000 до 13700 до 40000
Рабочая глубина, м до 15 до 14 - -
Скорость хода, уз до 44 до 51 до 45 до 50

Наведение на цель

Простейшей методикой наведения является программирование курса движения. Курс учитывает теоретическое прямолинейное смещение цели за время, необходимое для прохождения расстояния между атакующим и атакуемым кораблем.


Заметное изменение скорости хода или курса атакуемым кораблем приводит к прохождению торпеды мимо. Ситуацию отчасти спасает запуск нескольких торпед «веером», что позволяет перекрывать больший диапазон. Но подобная методика не гарантирует поражения цели и ведет к перерасходу боекомплекта.

До Первой мировой войны предпринимались попытки создания торпед с корректировкой курса по радиоканалу, проводам или иным способам, но до серийного производства дело не дошло. Примером может служить торпеда Джона Хаммонда Младшего, которая использовала для самонаведения свет прожектора вражеского корабля.

Для обеспечения наведения в 30-е годы стали разрабатываться автоматические системы.

Первыми стали системы наведения по акустическому шуму, издаваемому гребными винтами атакуемого судна. Проблемой являются малошумные цели, акустический фон от которых может оказаться ниже шума винтов самой торпеды.

Для устранения подобной проблемы создана система наведения по отраженным сигналам от корпуса корабля или создаваемой им кильватерной струи. Для корректировки движения торпеды могут применяться методики телеуправления по проводам.

Боевая часть

Боевой заряд, расположенный в головной части корпуса состоит из заряда взрывчатого вещества и взрывателей. На ранних моделях торпед, применявших в Первую мировую войну, использовалось однокомпонентное взрывчатое вещество (например, пироксилин).

Для подрыва применялся примитивный детонатор, установленный в носовой части. Срабатывание ударника обеспечивалось только в узком диапазоне углов, близком к перпендикулярному попаданию торпеды в цель. Позднее стали применятся усы, связанные с бойком, которые расширили диапазон этих углов.


Дополнительно стали устанавливаться инерционные взрыватели, срабатывавшие в момент резкого замедления движения торпеды. Использование таких детонаторов потребовало введения предохранителя, которым стала крыльчатка, раскручиваемая потоком воды. При использовании электрических взрывателей крыльчатка соединяется с миниатюрным генератором, заряжающим конденсаторную батарею.

Взрыв торпеды возможен только при определенном уровне заряда батареи. Подобное решение обеспечило дополнительную защиту атакующего корабля от самоподрыва. К моменту начала Второй мировой стали применяться многокомпонентные смеси, обладающие повышенной разрушающей способностью.

Так, в торпеде 53-39 используется смесь тротила, гексогена и алюминиевой пудры.

Применение систем защиты от подводного взрыва привело к появлению взрывателей, обеспечивавших подрыв торпеды вне зоны защиты. После войны появились модели, оснащенные ядерными боеголовками. Первая советская торпеда с ядерной боеголовкой модели 53-58 была испытана осенью 1957 года. В 1973 году ее сменила модель 65-73 калибра 650 мм, способная нести ядерный заряд мощностью 20 кт.

Боевое применение

Первым государством, применившим новое оружие в деле, стала Россия. Торпеды использовались во время русско-турецкой войны 1877-78 года и запускались с катеров. Второй крупной войной с использованием торпедного вооружения стала русско-японская война 1905 года.

В ходе Первой мировой войны оружие использовалось всеми воюющими сторонами не только в морях и океанах, но и на речных коммуникациях. Широкое использование подводных лодок Германией привело к большим потерям торгового флота Антанты и союзников. В ходе Второй мировой войны стали применяться усовершенствованные варианты вооружения, оснащенные электродвигателями, усовершенствованными системами наведения и маневрирования.

Любопытные факты

Были разработаны торпеды больших размеров, предназначенные для доставки крупных боеголовок.

Примером такого вооружения может служить советская торпеда Т-15, имевшая вес около 40 т при диаметре 1500 мм.

Оружие предполагалось использовать для атаки побережья США термоядерными зарядами мощностью 100 мегатонн.

Видео

Что такое морские мины и торпеды? Как они устроены и каковы принципы их действия? Являются ли в настоящее время мины и торпеды таким же грозным оружием как и во времена прошедших войн?

Обо всем этом рассказывается в брошюре.

Она написана по материалам открытой отечественной и зарубежной печати, а вопросы использования и развития минно-торпедного оружия изложены по взглядам иностранных специалистов.

Адресуется книга широкому кругу читателей, особенно молодежи, готовящейся к службе в Военно-Морском Флоте СССР.

Торпеды наших дней

Торпеды наших дней

На вооружении иностранных ВМС находятся сейчас торпеды различных типов. Они классифицируются в зависимости от того, какой заряд заключен в боевой части - ядерный или обычное взрывчатое вещество. Торпеды различаются также по виду силовых установок, которые могут быть парогазовыми, электрическими или реактивными.

По габаритно-весовым характеристикам американские торпеды подразделяются на две основные категории: тяжелые - калибром 482-и 533 мм и малогабаритные - от 254 до 324 мм.

Неодинаковы торпеды и по длине. Для американских торпед характерна стандартная длина, соответствующая принятой в ВМС США длине торпедных аппаратов - 6,2 м (в других странах 6,7-7,2). Это ограничивает возможности помещения запасов топлива, а следовательно, и дальность хода торпед.

По характеру своего маневрирования после выстрела торпеды бывают прямоидущими, маневрирующими и самонаводящимися. В зависимости от способа взрыва существуют торпеды контактные и неконтактные.

Большинство современных торпед - дальноходные, способные поражать цели на дистанциях 20 км и более. По скорости нынешние торпеды во много раз превосходят образцы периода второй мировой войны.

Как же устроена парогазовая торпеда? Она (рис. 18, а) представляет собой самодвижущийся и самоуправляемый стальной подводный снаряд, сигарообразной формы, длиной около 7 м, в котором размещены сложные приборы и мощный заряд взрывчатого вещества. Почти все современные торпеды состоят из четырех сочлененных между собой частей: боевого зарядного отделения; отделения энергокомплектов с отсеком пускорегулирующей аппаратуры или аккумуляторного отделения; кормовой части с двигателем и приборами управления; хвостовой части с рулями и винтами.

В боевом зарядном отделении торпеды, кроме взрывчатого вещества, помещаются взрыватели и запальные приспособления.

Имеются взрыватели контактного и неконтактного действия. Контактные взрыватели (ударники) бывают инерционные и лобовые. Они действуют при ударе торпеды о борт корабля, в результате чего иглы ударника приводят в действие капсюли-воспламенители. Последние, взрываясь, воспламеняют взрывчатое вещество, находящееся в запальном станке. Это взрывчатое вещество является вторичным детонатором, от действия которого происходит взрыв всего заряда, находящегося в зарядном отделении торпеды.

Инерционные ударники с запальными стаканами вставляются в верхнюю часть боевого зарядного отделения в специальные гнезда (горловины). Принцип действия этого ударника основан на инерции маятника, который, отклоняясь от вертикального положения, при столкновении торпеды с бортом корабля освобождает боек, а тот, в свою очередь, под действием боевой пружины опускается вниз и накалывает своими иглами капсюли, вызывая их воспламенение.

Чтобы на стреляющем корабле не произошло взрыва снаряженной торпеды от случайного сотрясения, толчка, взрыва вблизи корабля или от удара торпеды о воду в момент выстрела, у инерционного ударника есть специальное предохранительное приспособление, стопорящее маятник.


а -парогазовая: 1 - запальный стакан; 2 - инерционный ударник; 3 - запирающий кран; 4 - машинный кран; 5 - прибор расстояния; 5-машина; 7 - курок; 8- гироскопический прибор; 9 -гидростатический прибор; 10 - Керосиновый резервуар; 11 - машинный регулятор;

б - электрическая: 1 -взрывчатое вещество; 2 - взрыватель; 3 - аккумуляторы; 4 - электродвигатели; 5 - пусковой контактор; 6 - гидростатический прибор; 7 - гироскопический прибор; 8 - вертикальный руль; 9 - передний винт; 10 - задний винт; 11 - горизонтальный руль; 12 -баллоны со сжатым воздухом; 13 - прибор для сжигания водорода

Предохранительное устройство связано с валом вертушки, вращающейся под действием встречного потока воды. При движении торпеды вертушка отстопоривает маятник, опуская иглы и сжимая боевую пружину бойка. Ударник приводится в боевое положение только тогда, когда торпеда после выстрела пройдет в воде 100т- 200 м.

Существует много различных типов контактных торпедных взрывателей. В некоторых американских торпедах, оснащенных взрывателями других типов, взрыв торпеды происходит не от удара бойка по капсюлю-воспламенителю, а в результате замыкания электрической цепи.

Предохранительное устройство от случайного взрыва состоит здесь также из вертушки. Вал вертушки вращает генератор постоянного тока, который вырабатывает энергию и заряжает конденсатор, выполняющий роль аккумулятора электрической энергии.

В начале движения торпеда безопасна - цепь от генератора к конденсатору разомкнута при помощи колеса-замедлителя, и детонатор находится внутри предохранительной камеры. Когда торпеда пройдет определенную часть пути, вращающийся вал вертушки поднимет детонатор из камеры, колесо-замедлитель замкнет цепь и генератор начнет заряжать конденсатор.

Лобовой ударник вставляется горизонтально в переднюю часть боевого зарядного отделения торпеды. При ударе торпеды о борт корабля боек лобового ударника под действием пружины накалывает капсюль-воспламенитель первичного детонатора, который воспламеняет вторичный детонатор, а последний вызывает взрыв всего заряда.

Чтобы произошел взрыв при попадании торпеды в корабль даже под углом, лобовой ударник снабжается несколькими металлическими рычагами - "усами", расходящимися в разные стороны. При задевании одним из рычагов за борт корабля рычаг смещается и освобождает ударник, который накалывает капсюль, производя взрыв.

Для предохранения торпеды от преждевременного взрыва вблизи стреляющего корабля расположенный в лобовом ударнике стержень бойка стопорится предохранительной вертушкой. После выстрела торпедой вертушка начинает вращаться и полностью отстопорит боек, когда торпеда удалится на некоторое расстояние от корабля.

Стремление повысить эффективность действия торпед привело к созданию неконтактных взрывателей, способных увеличить вероятность попадания в цель и поражать корабли в наименее защищенную часть - днище.

Неконтактный взрыватель замыкает цепь запала и взрывателя торпеды не в результате динамического удара (контакта с целью, непосредственного удара о корабль), а в результате воздействия на него различных полей, создаваемых кораблем. К ним относятся магнитные, акустические, гидродинамические и оптические поля.

Установку глубины хода торпеды с неконтактным взрывателем производят так, чтобы взрыватель срабатывал точно под днищем цели.

Для придания торпеде хода применяются различные двигатели. Парогазовые торпеды, например, приводятся в движение поршневой машиной, работающей на смеси водяного пара с продуктами сгорания керосина или другой горючей жидкости.

В парогазовой торпеде, обычно в задней части воздушного резервуара, помещается водяной отсек, в котором находится пресная вода, подаваемая для испарения в подогревательный аппарат.

В кормовой части торпеды, разделенной на отсеки (у американской торпеды Мк.15, например, кормовая часть имеет три отсека), помещаются подогревательный аппарат (камера сгорания), главная машина и механизмы, управляющие движением торпеды по направлению и глубине.

Силовая установка вращает гребные винты, которые сообщают торпеде поступательное движение. Во избежание постепенного снижения давления воздуха из-за неплотности укупорки воздушный резервуар разобщается с машиной посредством специального приспособления, имеющего запирающий кран.

Перед выстрелом запирающий кран открывается, и воздух подходит к машинному крану, который специальными тягами соединен с курком.

Во время движения торпеды в торпедном аппарате курок откидывается. Машинный кран начинает автоматически впускать воздух из воздушного резервуара в подогревательный аппарат через машинные регуляторы, которые поддерживают установленное постоянное давление воздуха в подогревательном аппарате.

Вместе с воздухом в подогревательный аппарат поступает через форсунку керосин. Он воспламеняется посредством специального зажигательного приспособления, расположенного на крышке подогревательного аппарата. В этот аппарат поступает также вода для испарения и снижения температуры горения. В результате сгорания керосина и парообразования создается парогазовая смесь, которая поступает в главную машину и приводит ее в действие.

В кормовом отделении рядом с главной машиной расположены гироскоп, гидростатический аппарат и две рулевые машинки. Одна из них служит для управления ходом торпеды в горизонтальной плоскости (удержание заданного направления) и действует от гироскопического прибора. Вторая машинка служит для управления ходом торпеды в вертикальной плоскости (удержание заданной глубины) и действует от гидростатического аппарата.

Действие гироскопического прибора" основано на свойстве быстровращающегося (20-30 тыс. об/мин) волчка сохранять в пространстве направление оси вращения, полученное в момент запуска.

Прибор запускается сжатым воздухом во время движения торпеды в трубе торпедного аппарата. Как только выпущенная торпеда по какой-либо причине начнет уклоняться от направления, заданного ей при выстреле, ось волчка, оставаясь в неизменном положении в пространстве и действуя на золотничок рулевой машинки, перекладывает вертикальные рули и тем самым направляет торпеду по заданному направлению.

Гидростатический аппарат, расположенный в нижней части корпуса торпеды, действует по принципу равновесия двух сил - давления столба воды и пружины. Изнутри торпеды на диск давит пружина, упругость которой устанавливается перед выстрелом в зависимости от того, на какой глубине торпеда должна идти, а снаружи - столб воды.



Если выстреленная торпеда идет на глубине больше заданной, то избыток давления воды на диск через систему рычагов передается к золотничку рулевой машинки, управляющей горизонтальными рулями, которая изменяет положение рулей. В результате перекладки рулей торпеда начнет подниматься вверх. При ходе торпеды выше заданной глубины давление уменьшится и рули переложатся в обратную сторону. Торпеда опустится вниз.

В хвостовой части торпеды расположены гребные винты, насаженные на валы, соединенные с главной машиной. Имеются здесь и четыре пера, на которых закреплены вертикальные и горизонтальные рули для управления ходом торпеды по направлению и глубине.

В военно-морских силах иностранных государств особенно значительное распространение получили электрические торпеды.

Электрические торпеды состоят из четырех основных частей: боевого зарядного отделения, аккумуляторного отделения, кормовой и хвостовой частей (рис. 18, б).

Двигателем электрической торпеды служит электромотор, работающий от электрической энергии аккумуляторных батарей, расположенных в аккумуляторном отделении.

Электроторпеда по сравнению с парогазовой торпедой имеет важные преимущества. Во-первых, она не оставляет за собой видимого следа, чем обеспечивается скрытность атаки. Во-вторых, во время движения электроторпеда более устойчиво держится на заданном курсе, так как в отличие от парогазовой торпеды она при движении не изменяет ни веса, ни положения центра тяжести. Кроме того, у электрической торпеды сравнительно малая шумность, производимая двигателем и приборами, что особенно ценно при атаке.

Существует три основных способа использования торпед. Стрельба торпедами производится с надводных (с надводных кораблей) и подводных (с подводных лодок) торпедных аппаратов. Торпеды могут также сбрасываться в воду с воздуха самолетами и вертолетами.

Принципиально новым является использование торпед в качестве боевых частей противолодочных ракет, пуск которых осуществляется противолодочными ракетными средствами, устанавливаемыми на надводных кораблях.

Торпедный аппарат состоит из одной или нескольких труб с установленными на них приборами (рис. 19). Надводные торпедные аппараты могут быть поворотными и неподвижными. Поворотные аппараты (рис. 20) монтируются обычно в диаметральной плоскости корабля на верхней палубе. Неподвижные торпедные аппараты, которые также могут состоять из одной, двух и более торпедных труб, размещаются, как правило, внутри надстройки корабля. В последнее время на некоторых иностранных кораблях, в частности на современных торпедных атомных подводных лодках, торпедные аппараты монтируются под некоторым углом (10°) к диаметральной плоскости.

Такое расположение торпедных аппаратов связано с тем, что в носовой части торпедных подводных лодок размещается приемо-излучающая гидроакустическая аппаратура.

Подводный торпедный аппарат похож на неподвижный надводный торпедный аппарат. Как и неподвижный надводный аппарат, подводный имеет в каждом конце трубы по крышке. Задняя крышка открывается в торпедный отсек подводной лодки. Передняя крышка открывается прямо в воду. Ясно, что если одновременно открыть обе крышки, то в торпедный отсек проникнет морская вода. Поэтому подводный, как и неподвижный надводный, торпедный аппарат снабжен механизмом взаимозамкнутости, предотвращающим одновременное открытие двух крышек.



1 - прибор для управления вращением торпедного аппарата; 2 - место для наводчика; 3 - аппаратный прицел; 4 - труба торпедного аппарата; 5 - торпеда; 6 - неподвижное основание; 7 - поворотная платформа; 8 - крышка торпедного аппарата



Для выстреливания торпеды из торпедного аппарата используются сжатый воздух либо пороховой заряд. Выстреленная торпеда движется к цели при помощи своих механизмов.

Так как торпеда обладает скоростью движения, сравнимой со скоростью хода кораблей, необходимо при выстреле торпедой по кораблю или транспорту давать ей угол упреждения в направлении движения цели. Элементарно это можно пояснить следующей схемой (рис. 21). Предположим, в момент выстрела корабль, стреляющий торпедой, находится в точке А, а корабль противника в точке В. Для того чтобы торпеда попала в цель, ее необходимо выпустить по направлению АС. Это направление выбирается с таким расчетом, чтобы торпеда, прошла путь АС за такое же время, за которое корабль противника проходит расстояние ВС.

При указанных условиях торпеда должна встретиться с кораблем в точке С.

Для увеличения вероятности попадания в цель применяется стрельба несколькими торпедами по площади, которая ведется методом веера или методом последовательного выпуска торпед.

При стрельбе методом веера торпедные трубы разводят относительно друг друга на несколько градусов и выпускают торпеды залпом. Раствор трубам дают такой, чтобы расстояние между двумя рядом идущими торпедами в момент пересечения предполагаемого курса корабля-цели не превышало длины этого корабля.

Тогда из нескольких выпущенных торпед хотя бы одна должна попасть в цель. При стрельбе последовательным выпуском торпед они выстреливаются одна за другой через определенные промежутки времени, рассчитываемые в зависимости от скорости движения торпед и длины цели.

Установка торпедных аппаратов в определенном положении для стрельбы торпедами достигается при помощи приборов управления торпедной стрельбой (рис. 22).



1 - маховик горизонтального наведения; 2 - шкала; 3 - визир



Как сообщает американская печать, торпедное вооружение подводных лодок ВМС США имеет некоторые особенности. Это прежде всего сравнительно небольшая стандартная длина торпедных аппаратов -- всего 6,4 м. Хотя тактические характеристики таких "коротких" торпед ухудшаются, зато их запас на стеллажах лодки можно увеличить до 24-40 штук.

Так как все американские атомные лодки оборудованы устройством быстрого заряжания торпед, то число аппаратов на них снижено с 8 до 4. На американских и английских атомных лодках торпедные аппараты действуют на гидравлическом принципе выстреливания, что обеспечивает безопасность, безпузырность и бездифферентность торпедной стрельбы.

В современных условиях вероятность применения торпед надводными кораблями против надводных кораблей значительно снизилась вследствие появления грозного ракетного оружия. Вместе с тем способность некоторых классов надводных кораблей - тЬрпедных катеров и эскадренных миноносцев - наносить торпедный удар еще представляет для кораблей и транспортов угрозу и ограничивает их зону возможного маневрирования. В то же время торпеды становятся все более и более важным средством борьбы с подводными лодками. Вот почему за последние годы в военно-морских силах многих иностранных государств большое значение придается противолодочным торпедам (рис. 23), которыми вооружаются авиация, подводные лодки и надводные корабли.

На вооружении подводных лодок находятся торпеды различных типов, предназначенные для поражения подводных и надводных целей. Для борьбы с надводными целями подводные лодки применяют в основном прямо идущие тяжелые торпеды с зарядом взрывчатого вещества 200-300 кг, а для поражения подводных лодок - самонаводящиеся электрические противолодочные торпеды.

Торпедные двигатели: вчера и сегодня

ОАО «НИИ мортеплотехники» осталось единственным предприятием в Российской Федерации, осуществляющим полномасштабную разработку тепловых энергоустановок

В период от основания предприятия и до середины 1960-х гг. главное внимание уделялось разработке турбинных двигателей для противокорабельных торпед с рабочим диапазоном работы турбин на глубинах 5-20 м. Противолодочные торпеды проектировались тогда только на электроэнергетике. В связи с условиями применения противокорабельных торпед важными требованиями к энергосиловым установкам были максимально возможная мощность и визуальная незаметность. Требование по визуальной незаметности легко выполнялось за счет применения двухкомпонентного топлива: керосина и маловодного раствора перекиси водорода (МПВ) концентрации 84%. В продуктах сгорания содержался водяной пар и двуокись углерода. Выхлоп продуктов сгорания за борт осуществлялся на расстоянии 1000-1500 мм от органов управления торпедой, при этом пар конденсировался, а двуокись углерода быстро растворялась в воде так, что газообразные продукты сгорания не только не достигали поверхности воды, но и не оказывали влияния на рули и гребные винты торпеды.

Максимальная мощность турбины, достигнутая на торпеде 53-65, составила 1070 кВт и обеспечивала движение со скоростью около 70 узлов. Это была самая скоростная торпеда в мире. Для снижения температуры продуктов сгорания топлива с 2700-2900 К до приемлемого уровня в продукты сгорания впрыскивалась морская вода. На начальной стадии работ соли из морской воды осаждались в проточной части турбины и приводили к ее разрушению. Это происходило до тех пор, пока не были найдены условия безаварийной работы, минимизирующие влияние солей морской воды на работоспособность газотурбинного двигателя.

При всех энергетических преимуществах перексида водорода как окислителя, его повышенная пожаровзрывоопасность при эксплуатации диктовала поиск применения альтернативных окислителей. Одним из вариантов подобных технических решений была замена МПВ на газообразный кислород. Турбинный двигатель, разработанный на нашем предприятии, сохранился, а торпеда, получившая обозначение 53-65К, успешно эксплуатировалась и не снята с вооружения ВМФ до сих пор. Отказ от применения МПВ в торпедных тепловых энергосиловых установках привел к необходимости проведения многочисленных научно-исследовательских работ по поиску новых топлив. В связи с появлением в середине 1960-х гг. атомных подводных лодок, имеющих высокие скорости подводного движения, противолодочные торпеды с электроэнергетикой оказались малоэффективными. Поэтому наряду с поиском новых топлив исследовались новые типы двигателей и термодинамические циклы. Наибольшее внимание было уделено созданию паротурбинной установки, работающей в замкнутом цикле Ренкина. На этапах предварительной как стендовой, так и морской отработки таких агрегатов, как турбина, парогенератор, конденсатор, насосы, клапана и всей системы в целом использовалось топливо: керосин и МПВ, а в основном варианте – твердое гидрореагирующее топливо, обладающее высокими энергетическими и эксплуатационными показателями.

Паротурбинная установка была успешно отработана, но работы по торпеде были остановлены.

В 1970-1980-х гг. большое внимание уделялось разработке газотурбинных установок открытого цикла, а также комбинированного цикла с применением в системе газовыхлопа эжектора на больших глубинах работы. В качестве топлива использовались многочисленные рецептуры жидкого монотоплива типа Otto-Fuel II, в том числе с добавками металлического горючего, а также с применением жидкого окислителя на основе гидроксил аммония перхлорат (НАР).

Практический выход получило направление создания газотурбинной установки открытого цикла на топливе типа Otto-Fuel II. Был создан турбинный двигатель мощностью более 1000 кВт для ударной торпеды калибра 650 мм.

В середине 1980-х гг. по результатам проведенных исследовательских работ руководством нашего предприятия было принято решение о развитии нового направления – разработки для универсальных торпед калибра 533 мм аксиально-поршневых двигателей на топливе типа Otto-Fuel II. Поршневые двигатели по сравнению с турбинными обладают более слабой зависимостью экономичности от глубины хода торпеды.

С 1986-го по 1991 гг. был создан аксиально-поршневой двигатель (модель 1) мощностью около 600 кВт для универсальной торпеды калибра 533 мм. Он успешно прошел все виды стендовых и морских испытаний. В конце 1990-х годов в связи с уменьшением длины торпеды была создана вторая модель этого двигателя путем модернизации в части упрощения конструкции, повышении надежности, исключения дефицитных материалов и внедрения многорежимности. Эта модель двигателя принята в серийной конструкции универсальной глубоководной самонаводящейся торпеды.

В 2002 г. ОАО «НИИ мортеплотехники» было поручено создание энергосиловой установки для новой легкой противолодочной торпеды калибра 324 мм. После анализа всевозможных типов двигателей, термодинамических циклов и топлив выбор был сделан также, как и для тяжелой торпеды, в пользу аксиально-поршневого двигателя открытого цикла на топливе типа Otto-Fuel II.

Однако при проектировании двигателя был учтен опыт слабых сторон конструкции двигателя тяжелой торпеды. Новый двигатель имеет принципиально другую кинематическую схему. В нем отсутствуют элементы трения в топливоподающем тракте камеры сгорания, что исключило возможность взрыва топлива в процессе работы. Вращающиеся части хорошо сбалансированы, а приводы вспомогательных агрегатов значительно упрощены, что привело к снижению виброактивности. Внедрена электронная система плавного регулирования расхода топлива и соответственно мощности двигателя. Практически отсутствуют регуляторы и трубопроводы. При мощности двигателя 110 кВт во всем диапазоне требуемых глубин, на малых глубинах он допускает удвоение мощности при сохранении работоспособности. Широкий диапазон параметров работы двигателя позволяет использовать его в торпедах, антиторпедах, самодвижущихся минах, средствах гидроакустического противодействия, а также в автономных подводных аппаратах военного и гражданского назначения.

Все эти достижения в области создания торпедных энергосиловых установок были возможны в связи с наличием в ОАО «НИИ мортеплотехники» уникальных экспериментальных комплексов, созданных как собственными силами, так и за счет государственных средств. Комплексы располагаются на территории около 100 тыс.м2. Они обеспечены всеми необходимыми системами энергоснабжения, в том числе системами воздуха, воды, азота и топлив высокого давления. В испытательные комплексы входят системы утилизации твердых, жидких и газообразных продуктов сгорания. В комплексах имеются стенды для испытаний макетных и полномасштабных турбинных и поршневых двигателей, а также двигателей других типов. Имеются, кроме того, стенды для испытаний топлив, камер сгорания, различных насосов и приборов. Стенды оснащены электронными системами управления, измерения и регистрации параметров, визуального наблюдения испытуемых объектов, а также аварийной сигнализацией и защитой оборудования.

Торпеда (от лат. torpedo narke - электрический скат , сокращённо лат. torpedo ) - самодвижущееся устройство, содержащее взрывчатый заряд и служащее для уничтожения надводных и подводных целей. Появление торпедного оружия в XIX веке коренным образом изменила тактику ведения боевых действий на море и послужило толчком для разработки новых типов кораблей , несущих торпеды в качестве главного вооружения .

Торпеды различных типов. Военный музей на батарее Безымянной, Владивосток.

История создания

Иллюстрация из книги Джованни де ла Фонтана

Как и множество других изобретений, изобретение торпеды имеет сразу несколько отправных точек. Впервые идея использовать специальные снаряды для уничтожения вражеских кораблей описана в книге итальянского инженера Джованни де ла Фонтана (итал. Giovanni de la Fontana ) Bellicorum instrumentorum liber, cum figuris et fictitys litoris conscriptus (рус. «Иллюстрированная и зашифрованная книга инструментов войны» или иначе «Книга о военных принадлежностях» ). В книге приведены изображения различных устройств военного назначения, передвигающихся по земле, воде и воздуху и приводимых в движение за счет реактивной энергии пороховых газов.

Следующим событием, предопределившем появление торпеды, стало доказательство Дэвидом Бушнеллом (англ. David Bushnell ) возможности горения пороха под водой. Позже Бушнелл попытался создать первую морскую мину, оснащенную изобретенным им же часовым взрывным механизмом, но попытка ее боевого применения (как и изобретенной Бушнеллом подводной лодки "Черепаха") оказалась безуспешной.
Очередной шаг по пути к созданию торпед был сделан Робертом Фултоном(англ. Robert Fulton ), создателем одного из первых пароходов. В 1797 году он предложил англичанам использовать дрейфующие мины, оснащенные часовым взрывным механизмом и впервые использовал слово торпе́до для описания устройства, которое должно было взрываться под днищем и таким образом уничтожать вражеские корабли. Это слово было использовано из за способности электрических скатов(лат. torpedo narke ) оставаться незамеченными, а затем стремительным броском парализовать свою жертву.

Шестовая мина

Изобретение Фултона не являлось торпедой в современной понимании этого слова, а являлось заградительной миной . Такие мины широко использовались российским флотом во время Крымской войны на Азовском, Черном и Балтийском морях. Но такие мины были оборонительным оружием. Появившиеся чуть позже шестовые мины стали оружием наступательным. Шестовая мина представляла из себя взрывчатку, закрепленную на конце длинного шеста, и скрытно доставлявшаяся с помощью лодки к вражескому кораблю.

Новым этапом стало появление буксируемых мин. Такие мины существовали как в оборонительном, так и в наступательном вариантах. Оборонительная мина Гарвея (англ. Harvey ) буксировалась с помощью длинного троса на расстоянии примерно 100-150 метров от корабля вне кильватерной струи и имела дистанционный взрыватель, который приводился в действие при попытке противника протаранить защищаемый корабль. Наступательный вариант, мина-крылатка Макарова также буксировалась на тросе, но при приближении вражеского корабля буксир шел курсом прямо на противника, в последний момент резко уходил в сторону и отпускал трос, мина же продолжала двигаться по инерции и взрывалась при столкновении с кораблем противника.

Последним шагом на пути к изобретению самодвижущейся торпеды стали наброски неизвестного австро-венгерского офицера, на которых был изображен некий снаряд, буксируемый с берега и начиненный зарядом пироксилина. Наброски попали к капитану Джованни Бьяджо Луппису (рус. Giovanni Biagio Luppis ), который загорелся идеей создать самодвижущийся аналог мины для береговой обороны (англ. coastsaver ), управляемой с берега с помощью тросов. Луппис построил макет такой мины, приводимой в движение пружиной от часового механизма, но наладить управление этим снарядом ему не удалось. В отчаянии Луппис обратился за помощью к англичанину Роберту Уайтхеду (англ. Robert Whitehead ), инженеру судостроительной компании Stabilimeno Technico Fiumano в Фиуме (в настоящее время Риека, Хорватия).

Торпеда Уайтхеда


Уайтхеду удалось решить две проблемы, стоявшие на пути его предшественников. Первая проблема заключалась в простом и надежном двигателе, который сделал бы торпеду автономной. Уайтхед решил установить на свое изобретение пневматический двигатель, работающий на сжатом воздухе и приводящий во вращение винт, установленный в кормовой части. Второй проблемой была заметность торпеды, движущейся по воде. Уайтхед решил сделать торпеду таким образом, чтобы она двигалась на небольшой глубине, но на протяжении длительного времени ему не удавалось добиться стабильности глубины погружения. Торпеды либо всплывали, либо уходили на большую глубину, либо вообще двигались волнами. Решить эту проблему Уайтхеду удалось с помощью простого и эффективного механизма - гидростатического маятника, который управлял рулями глубины. реагируя на дифферент торпеды, механизм отклонял рули глубины в нужную сторону, но при этом не позволял торпеде совершать волнообразные движения. Точность выдерживания глубины была вполне достаточной и составляла ±0,6 м.

Торпеды по странам

Устройство торпед

Торпеда состоит из корпуса обтекаемой формы, в носовой части которого находится боевая часть с взрывателем и зарядом взрывчатого вещества. Для приведения в движение самоходных торпед на них устанавливаются двигатели различных типов: на сжатом воздухе, электрические, реактивные, механические. Для работы двигателя на борту торпеды размещается запас топлива: баллоны со сжатым воздухом, аккумуляторы , баки с топливом. Торпеды, оборудованные устройством автоматического или дистанционного наведения оснащаются приборами управления, сервоприводами и рулевыми механизмами.

Классификация

Типы торпед Кригсмарине

Классификация торпед проводится по нескольким признакам:

  • по назначению: противокорабельные; противолодочные; универсальные, используемые против подводных лодок и надводных кораблей.
  • по типу носителя: корабельные ; лодочные ; авиационные ; универсальные; специальные (боевые части противолодочных ракет и самодвижущихся мин).
  • по типу заряда: учебные, без взрывчатого вещества; с зарядом обычного взрывчатого вещества; с ядерным боеприпасом;
  • по типу взрывателя: контактные; неконтактные; дистанционные; комбинированные.
  • по калибру: малого калибра, до 400 мм; среднего калибра, от 400 до 533 мм включительно; большого калибра, свыше 533 мм.
  • по типу движителя: винтовые ; реактивные; с внешним движителем.
  • по типу двигателя: газовые; парогазовые; электрические; реактивные.
  • по типу управления: неуправляемые; автономно управляемые прямоидущие; автономно управляемые маневрирующие; с дистанционным управлением; с ручным непосредственным управлением; с комбинированным управлением.
  • по типу самонаведения: с активным самонаведением; с пассивным самонаведением; с комбинированным самонаведением.
  • по принципу самонаведения: с магнитным наведением; с электромагнитным наведением; с акустическим наведением; с тепловым наведением; с гидродинамическим наведением; с гидрооптическим наведением; комбинированные.

Устройства пуска

Торпедные двигатели

Газовые и парогазовые торпеды

Двигатель Brotherhood

Первые массовые самоходные торпеды Роберта Уайтхеда использовали поршневой двигатель, работавший на сжатом воздухе. Сжатый до 25 атмосфер воздух из баллона через редуктор, понижающий давление, поступал в простейший поршневой двигатель, который, в свою очередь, приводил во вращение гребной винт торпеды. Двигатель Уайтхеда при 100 об/мин обеспечивал скорость торпеды 6,5 узла при дальности 180 м. Для увеличения скорости и дальности хода требовалось увеличивать давление и объема сжатого воздуха соответственно.

C развитием технологии и ростом давления возникла проблема обмерзания клапанов, регуляторов и двигателя торпед. При расширении газов происходит резкое понижение температуры, которое тем сильнее, чем выше разница давлений. Избежать обмерзания удалось в торпедных двигателях с сухим обогревом, которые появились в 1904 году. В трехцилиндровых двигателях Brotherhood, которыми оснащались первые торпеды Уайтхеда с подогревом, для снижения давления воздуха использовался керосин или спирт. Жидкое топливо впрыскивалось в воздух, поступавший из баллона и поджигалось. За счет сгорания топлива давление повышалось, а температура снижалась. Помимо двигателей с сжиганием топлива, позже появились двигатели, в которых в воздух впрыскивалась вода, благодаря чему менялись физические свойства газовоздушной смеси.

Противолодочная торпеда MU90 с водометным двигателем

Дальнейшее совершенствование было связано с появлением паровоздушных торпед (торпед с влажным обогревом), у которых вода впрыскивалась в камеры сгорания топлива. Благодаря этому можно было обеспечить сжигание большего количества топлива, а также использовать пар, образующийся при испарении воды для подачи в двигатель и увеличения энергетического потенциала торпеды. Такая система охлаждения впервые была использована на торпедах British Royal Gun в 1908 году.

Количество топлива, которое может быть сожжено, ограничено количеством кислорода, которого в воздухе содержится около 21%. Для увеличения количества сжигаемого топлива были разработаны торпеды, у которых вместо воздуха в баллоны закачивался кислород. В Японии в годы Второй мировой войны стояла на вооружении кислородная торпеда 61 см Type 93 , самая мощная, дальнобойная и скоростная торпеда своего времени. Недостатком кислородным торпед была их взрывоопасность. В Германии в годы Второй мировой войны велись эксперименты с созданием бесследных торпед типа G7ut на перекиси водорода и оснащенные двигателем Вальтера. Дальнейшим развитием применения двигателя Вальтера стало создание реактивных и водометных торпед.

Электрические торпеды

Электрическая торпеда МГТ-1

Газовые и парогазовые торпеды имеют ряд недостатков: они оставляют демаскирующий след и имеют сложности с длительным хранением в заряженном состоянии. Этих недостатков лишены торпеды с электроприводом. Впервые электродвигателем оснастил торпеду своей конструкции Джон Эрикссон в 1973 году. Питание электродвигателя осуществлялось по кабелю от внешнего источника тока. Аналогичные конструкции имели торпеды Симса-Эдисона и Нордфельда , причем у последней по проводам также осуществлялось управление рулями торпеды. Первой успешной автономной электрической торпедой, у которой электропитание на двигатель подавалось с бортовых аккумуляторных батарей, стала немецкая G7e , широко распространенная в годы Второй Мировой войны. Но эта торпеда имела и ряд недостатков. Ее свинцово-кислотный аккумулятор был чувствителен к ударам, требовал регулярного обслуживания и подзарядки, а так же подогрева перед использованием. Аналогичную конструкцию имела американская торпеда Mark 18 . Экспериментальная G7ep, ставшая дальнейшим развитием G7e, была лишена этих недостатков так как в ней аккумуляторы были заменены на гальванические элементы. В современных электрических торпедах используются высоконадежные не обслуживаемые литий-ионные или серебряные аккумуляторные батареи.

Торпеды с механическим двигателем

Торпеда Бреннана

Механический двигатель впервые был использован в торпеде Бреннана . Торпеда имела два троса, намотанные на барабаны внутри корпуса торпеды. Береговые паровые лебедки тянули троса, которые крутили барабаны и приводили во вращение гребные винты торпеды. Оператор на берегу контролировал относительные скорости лебедок, благодаря чему мог изменять направление и скорость движения торпеды. Такие системы были использованы для береговой обороны в Великобритании в период с 1887 по 1903 годы.
В США в конце XIX века на вооружении состояла торпеда Хауэлла , которая приводилась в движение за счет энергии раскручиваемого перед пуском маховика. Хауэлл также впервые использовал гироскопический эффект для управления курсом движения торпеды.

Торпеды с реактивным двигателем

Носовая часть торпеды М-5 комплекса Шквал

Попытки использовать реактивный двигатель в торпедах предпринимались еще во второй половине XIX века. После окончания Второй мировой войны был предпринят ряд попыток создания ракето-торпед, которые являлись комбинацией ракеты и торпеды. После запуска в воздух ракето-торпеда использует реактивный двигатель, выводящий головную часть - торпеду к цели, после падения в воду включается обычный торпедный двигатель и дальнейшее движение осуществляется уже в режиме обычной торпеды. Такое устройство имели ракето-торпеды воздушного базирования Fairchild AUM-N-2 Petrel и корабельные противолодочные RUR-5 ASROC , Grebe и RUM-139 VLA. В них использовались стандартные торпеды, совмещенные с ракетным носителем. В комплексе RUR-4 Weapon Alpha использовалась глубинная бомба, оснащенная ракетным ускорителем. В СССР на вооружении стояли авиационные ракето-торпеды РАТ-52 . В 1977 в СССР был принят на вооружение комплекс Шквал , оснащенный торпедой М-5. Эта торпеда имеет реактивный двигатель, работающий на гидрореагирующем твёрдом топливе. В 2005 году о создании аналогичной суперкавитирущей торпеды сообщила немецкая компания Diehl BGT Defence, а в США ведутся разработки торпеды HSUW. Особенностью реактивных торпед является их скорость, которая превышает 200 узлов и достигается благодаря движению торпеды в суперкавитирующей полости пузырьков газа, благодаря чему снижается сопротивление воды.

Кроме реактивных двигателей, в настоящее время используются также нестандартные торпедные двигатели от газовых турбин до двигателей на однокомпонентном топливе, например, на гексафториде серы, распыляемого над блоком твердого лития.

Приборы маневрирования и управления

Маятниковый гидростат
1. Ось маятника.
2. Руль глубины.
3. Маятник.
4. Диск гидростата.

Уже при первых экспериментах с торпедами стало ясно, что во время движения торпеда постоянно отклоняется от изначально заданного курса и глубины хода. Некоторые образцы торпед получили систему дистанционного управления, которая позволяла вручную задавать глубину хода и курс движения. Роберт Уайтхед на торпеды собственной конструкции установил специальный прибор - гидростат . Он состоял из цилиндра с подвижным диском и пружиной и размещался в торпеде так, что диск воспринимал давление воды. При изменении глубины хода торпеды диск перемещался вертикально и с помощью тяг и вакуумно-воздушного сервопривода управлял рулями глубины. Гидростат имеет значительное запаздывание срабатывания по времени, поэтому при его использовании торпеда постоянно меняла глубину хода. Для стабилизации работы гидростата Уайтхед использовал маятник, который был соединен с вертикальными рулями таким образом, чтобы ускорить работу гидростата.
Пока торпеды имели ограниченную дальность хода, мер по выдерживанию курса не требовалось. С увеличением дальности торпеды стали значительно отклоняться от курса, что потребовало использовать специальные меры и управлять вертикальными рулями. Наиболее эффективным прибором стал прибор Обри, который представлял из себя гироскоп, который при наклоне любой из его осей стремится занять первоначальное положение. С помощью тяг возвратное усилие гироскопа передавалось на вертикальные рули, благодаря чему торпеда выдерживала первоначально заданный курс с достаточно высокой точностью. Гироскоп раскручивался в момент выстрела с помощью пружины или пневматической турбины. При установке гироскопа на угол, не совпадающий с осью пуска, можно было добиться движения торпеды под углом к направлению выстрела.

Торпеды, оборудованные гидростатическим механизмом и гироскопом, в годы Второй мировой войны стали оборудоваться механизмом циркуляции . После пуска такая торпеда могла двигаться по любой заранее запрограммированной траектории. В Германии такие системы наведения получили название FaT (Flachenabsuchender Torpedo, горизонтально маневрирующая торпеда) и LuT - (Lagenuabhangiger Torpedo, торпеда с автономным управлением). Системы маневрирования позволяли задавать сложные траектории движения, благодаря чему повышалась безопасность стреляющего корабля и повышалась эффективность стрельбы. Циркулирующие торпеды были наиболее эффективны при атаке конвоев и внутренних акваторий портов, то есть при высоком скоплении кораблей противника.

Наведение и управление торпедами при стрельбе

Прибор управления торпедной стрельбой

Торпеды могут иметь различные варианты наведения и управления. Наибольшее распространение сначала имели неуправляемые торпеды, которые, подобно артиллерийскому снаряду, после пуска не оборудовались устройствами изменения курса. Существовали также торпеды, управляемые дистанционно по проводам и человекоуправляемые торпеды, управлявшиеся пилотом. Позже появились торпеды с системами самонаведения, которые самостоятельно наводились на цель используя различные физические поля: электромагнитное, акустическое, оптическое, а так же по кильватерному следу . Существуют также торпеды с дистанционным управлением по радиоканалу и использующие комбинацию различных типов наведения.

Торпедный треугольник

Торпеды Бреннана и некоторые другие типы ранних торпед имели дистанционное управление, в то время как наиболее распространенные торпеды Уайтхеда и их дальнейшие модификации требовали лишь первоначального наведения. При этом было необходимо учесть целый ряд параметров, влияющих на шансы поражения цели. С ростом дальности хода торпед решение задачи их наведения становилась все более сложной. Для наведения использовались специальные таблицы и приборы, с помощью которых рассчитывалось упреждение пуска в зависимости от взаимных курсов стреляющего корабля и цели, их скоростей, дистанции до цели, погодных условиий и других параметров.

Простейшие, но достаточно точные расчеты координат и параметров движения цели (КПДЦ), выполнялись вручную путем вычисления тригонометрических функций. Упростить расчет можно при использовании навигационного планшета или с помощью директора торпедной стрельбы .
В общем случае решение торпедного треугольника сводится к вычислению угла угла α по известным параметрам скорости цели V Ц , скорости торпеды V Т и курса цели Θ . Фактически за счет влияния различных параметров расчет производился, исходя их большего числа данных.

Панель управления Torpedo Data Computer

К началу Второй мировой войны появились автоматические электромеханические калькуляторы, позволяющие произвести расчет пуска торпед. На флоте США использовали Torpedo Data Computer (TDC) . Это был сложный механический прибор, в который перед пуском торпеды вводились данные о корабле-носителе торпеды (курс и скорость), о параметрах торпеде (тип, глубина, скорость) и данные о цели (курс, скорость, дистанция). По введенным данным TDC производил не только расчет торпедного треугольника, но и в автоматическом режиме производил сопровождение цели. Полученные данные передавались в торпедный отсек, где с помощью механического толкателя устанавливался угол гироскопа. TDC позволял вводить данные во все торпедные аппараты, учитывая их взаимное положение, в том числе для веерного пуска. Так как данные о носителе вводились автоматически с гирокомпаса и питометра , во время атаки подводная лодка могла вести активное маневрирование без необходимости повторных расчетов.

Устройства самонаведения

Значительно упрощают расчеты при стрельбе и повышают эффективность использования торпед использование систем дистанционного управления и самонаведения.
Впервые дистанционное механическое управление было применено на торпедах Бреннана, также управление по проводам использовалось на самых различных типах торпед. Радиоуправление впервые были использовано на торпеде Хаммонда в годы Первой Мировой войны .
Среди систем самонаведения наибольшее распространение сначала получили торпеды с акустическим пассивным самонаведением. Первыми поступили на вооружение в марте 1943 года торпеды G7e/T4 Falke, но массовой стала следующая модификация, G7es Т-5 Zaunkönig . В торпеде был использован метод пассивного наведения, при котором прибор самонаведения сначала анализирует характеристики шума, сравнивая их с характерными образцами, а затем формирует сигналы управления механизмом курсовых рулей, сравнивая уровни сигналов, поступающих на левый и правый акустический приемник. В США в 1941 была разработана торпеда Mark 24 FIDO , но из за отсутствия системы анализа шумов она применялась только для сброса с самолетов, так как могла навестись на стреляющий корабль. Торпеда после сброса начинала движение, описывая циркуляцию до момента приема акустических шумов, после чего происходило наведение на цель.
Активные акустические системы наведения содержат гидролокатор , с помощью которого производится наведение на цель по отраженному от нее акустическому сигналу.
Менее распространены системы, осуществляющие наведение по изменению магнитного поля, создаваемое кораблем.
После окончания Второй Мировой войны торпеды стали оборудоваться устройствами, производящими наведение по кильватерному следу, оставляемого целью.

Боевая часть

Pi 1 (Pi G7H) - взрыватель немецких торпед G7a и G7е

Первые торпеды снабжались боевой частью с зарядом пироксилина и ударным взрывателем. При ударе носовой части торпеды об борт цели, иглы ударника разбивают капсюли-воспламенители, которые, в свою очередь, вызывают подрыв взрывчатого вещества.

Срабатывание ударного взрывателя было возможно только при перпендикулярном попадании торпеды в цель. Если соударение происходило по касательной, ударник не срабатывал и торпеда уходила в сторону. Улучшить характеристики ударного взрывателя пытались с помощью специальных усов, расположенных в носовой части торпеды. Чтобы повысить вероятность подрыва, на торпеды стали устанавливать инерционные взрыватели. Инерционный взрыватель срабатывал от маятника, который при резком изменении скорости или курса торпеды освобождал боек, который, в свою очередь, под действием боевой пружины пробивал капсюли, воспламеняющие заряд взрывчатого вещества.

Головной отсек торпеды УГСТ с антенной системы самонаведения и датчиками неконтактных взрывателей

Позже, для повышения безопасности, взрыватели стали оборудовать предохранительной вертушкой, которая раскручивалась после набора торпедой заданной скорости и разблокировала ударник. Таким образом повышалась безопасность стреляющего корабля.

Кроме механических взрывателей, торпеды оборудовались электрическими взрывателями, подрыв которых происходил за счет разряда конденсатора. Конденсатор зарядался от генератора, ротор которого был связан с вертушкой. Благодаря такой конструкции предохранитель случайного подрыва и взрыватель конструктивно объединялись, что повышало их надежность.
Использование контактных взрывателей не позволяло реализовать весь боевой потенциал торпед. Применение толстой подводной брони и противоторпедных булей позволяло не только снизить урон при взрыве торпеды, но и в некоторых случаях избежать повреждений. Значительно повысить эффективность торпед можно было, обеспечив их подрыв не у борта, а под дном корабля. Это стало возможно с появлением неконтактных взрывателей. Такие взрыватели срабатывают под воздействием изменения магнитного, акустического, гидродинамического или оптического полей.
Неконтактные взрыватели бывают активного и пассивного типов. В первом случае взрыватель содержит излучатель, формирующий вокруг торпеды физическое поле, состояние которого контролируется приемником. В случае изменения параметров поля приемник инициирует подрыв взрывчатого вещества торпеды. Пассивные приборы наведения не содержат излучателей, а отслеживают изменения естественных полей, например магнитного поля Земли.

Средства противодействия

Броненосец Евстафий с противоторпедными сетями.

Появление торпед вызвало необходимость разработки и применения средств противодействия торпедным атакам. Так как первые торпеды имели невысокую скорость, с ними можно было бороться, обстреливая торпеды из стрелкового оружия и пушек малого калибра.

Проектируемые корабли стали оборудоваться специальными системами пассивной защиты. С внешней стороны бортов устанавливались противоторпедные були, которые представляли собой частично заполненные водой узконаправленных спонсоны . При попадании торпеды энергия взрыва поглощалась водой и отражалась от борта, снижая повреждения. После Первой Мировой войны также использовался противоторпедный пояс, который состоял из нескольких легкобронированных отсеков, расположенных напротив ватерлинии . Этот пояс поглощал взрыв торпеды и сводил к минимуму внутренние повреждения корабля. Разновидностью противоторпедного пояса являлась конструктивная подводная защита системы Пульезе, использованная на линкоре Giulio Cesare .

Реактивный комплекс противоторпедной защиты кораблей "Удав-1" (РКПТЗ-1)

Достаточно эффективными для борьбы с торпедами являлись противоторпедные сети, вывешенные с бортов корабля. Торпеда, попадая в сети, взрывалась на безопасном удалении от корабля либо теряла ход. Сети использовались так же для защиты корабельных стоянок, каналов и портовых акваторий.

Для борьбы с торпедами, использующими различные типы самонаведения, корабли и подводные лодки оборудуются имитаторами и источниками помех, усложняющими работу различных систем управления. Кроме того, принимаются различные меры, снижающие физические поля корабля.
Современные корабли оборудуются активными системами противоторпедной защиты. К таким системам относится, например, реактивный комплекс противоторпедной защиты кораблей "Удав-1" (РКПТЗ-1), в котором используются три вида боеприпасов (снаряд-отводитель, снаряд заградитель, глубинный снаряд), десятиствольная автоматизированная пусковая установка со следящими приводами наведения, приборов управления стрельбой, устройств заряжания и подачи. (англ.)

Видео


Торпеда Whitehead 1876 года


Торпеда Howell 1898 года


Поделитесь с друзьями или сохраните для себя:

Загрузка...