Температура кипения воды с изменением внешнего давления. Зависимость температуры кипения от давления

Кипение- это интенсивный переход жидкости в пар, происходящий с образованием пузырьков пара по всему объему жидкости при определенной температуре.

Испарение, в отличие от кипения, очень медленный процесс и происходит при любой температуре вне зависимости от давления.

При нагревании жидких тел их внутренняя энергия увеличивается, при этом возрастает скорость движения молекул, увеличивается их кинетическая энергия. Кинетическая энергия некоторых молекул увеличивается настолько, что ее становится достаточно для того, чтобы преодолеть взаимодействие между молекулами и вылететь из жидкости.

Мы пронаблюдали это явление на опыте. Для этого мы нагревали воду в открытой стеклянной колбе, измеряя ее температуру. Мы налили 100 мл воды в стеклянную колбу, которую затем закрепили на держатель и поставили на спиртовку. Начальная температура воды была равна 28 º С.

Время Температура Процесс в колбе

2 минуты 50° На стенках колбы появилось много мелких пузырьков

2мин. 45 сек 62° Пузырьки начали укрупняться. Появился шум

4минуты 84° Пузырьки становятся более крупными, поднимаются к поверхности.

6 мин 05 сек 100° Объем пузырьков резко увеличился, они активно лопаются на поверхности. Вода кипит.

Таблица № 1

По результатам проведенных наблюдений мы можем выделить этапы кипения.

Этапы кипения:

Испарение с поверхности жидкости усиливается по мере увеличения температуры. Иногда может наблюдаться туман (сам пар не виден).

На дне и стенках сосуда появляются пузырьки воздуха.

Сначала нагревается сосуд, а затем жидкость на дне и у стенок. Так как в воде всегда есть растворенный воздух, то при нагревании пузырьки воздуха расширяются и становятся видимыми.

Пузырьки воздуха начинают укрупняться, появляются по всему объему, причем в пузырьках будет не только воздух, но я водяной пар, так как вода начнет испаряться внутрь этих пузырьков воздуха. Появляется характерный шум.

При достаточно большом объеме пузырька он под действием Архимедовой силы начинает подниматься вверх. Так как жидкость прогревается способом конвекции, то температура нижних слоев больше температуры верхних слоев воды. Поэтому в поднимающемся пузырьке водяной пар будет конденсироваться, а объем пузырька уменьшаться. Соответственно давление внутри пузырька будет меньше, чем давление атмосферы и столба жидкости, оказываемое на пузырек. Пузырек будет захлопываться. Слышен шум.

При определенной температуре, то есть когда в результате конвекции прогреется вся жидкость, с приближением к поверхности объем пузырьков резко возрастает, так как давление внутри пузырька станет равным внешнему давлению (атмосферы и столба жидкости). На поверхности пузырьки лопаются, и над жидкостью образуется много пара. Вода кипит.

Признаки кипения

Много пузырьков лопается Много пара на поверхности.

Условие кипения:

Давление внутри пузырька равно давлению атмосферы плюс давление столба жидкости над пузырьком.

Чтобы довести воду до кипения, недостаточно только нагреть ее до 100º С, надо еще сообщить ей значительный запас тепла для того, чтобы перевести воду в другое агрегатное состояние, а именно в пар.

Вышеизложенное утверждение мы подтвердили опытом.

Мы взяли стеклянную колбу, закрепили на держатель и поместили в стоящую на огне кастрюлю с чистой водой так, чтобы склянка не касалась дна нашей кастрюли. Когда вода в кастрюле закипела, в колбе вода не кипела. Температура воды в колбе дошла,практически, до 100º С, однако не закипела. Этот результат можно было предвидеть.

Вывод: чтобы довести воду до кипения, недостаточно только нагреть ее до 100º С, надо сообщить ей значительный запас тепла.

Но чем же отличается вода в колбе от воды в кастрюле? Ведь в пузырьке та же вода, только отделенная от остальной массы стеклянной перегородкой, почему же не происходит с ней того же, что и с остальной водой?

Потому что перегородка мешает воде пузырька участвовать в тех течениях, которые перемешивают всю воду в кастрюле. Каждая частица воды в кастрюле может непосредственно коснуться накаленного дна, вода же колбы соприкасается только с кипятком.

Итак, мы пронаблюдали, что чистым кипятком вскипятить воду нельзя.

После окончания опыта 2 , мы всыпали в кипящую в кастрюле воду горсть соли. Вода на время перестала кипеть, а закипела вновь при температуре выше 100 ºС. Вскоре и в стеклянной колбе вода начала кипеть.

Вывод: Это произошло потому, что воде в колбе был сообщен достаточный запас тепла для кипения.

На основании вышеизложенного, мы можем четко определить, в чем отличие испарения и кипения:

Испарение – это спокойный, поверхностный процесс, происходящий при любой температуре.

Кипение же – бурный процесс, объемный, сопровождаемый раскрытием пузырьков.

3. Температура кипения

Температура, при которой жидкость кипит называется температурой кипения.

Чтобы испарение происходило во всем объеме жидкости, а не только с поверхности, то есть, чтобы жидкость кипела, необходимо, чтобы ее молекулы обладали соответствующей энергией, а для этого должны иметь соответствующую скорость, значит, жидкость должна быть нагрета до определенной температуры.

Следует помнить, что у различных веществ температура кипения различна. Температуры кипения веществ определены экспериментальным методом и занесены в таблицу.

Наименование вещества Температура кипения ° С

Водород -253

Кислород -183

Молоко 100

Свинец 1740

Железо 2750

Таблица № 2

Некоторые вещества, которые в обычных условиях являются газами, при достаточном охлаждении обращаются в жидкости, кипящие при очень низкой температуре. Жидкий кислород, например, при атмосферном давлении кипит при температуре -183 ºС. Вещества, которые в обычных условиях мы наблюдаем в твердом состоянии, обращаются при плавлении в жидкости, кипящие при очень высокой температуре.

В отличие от испарения, которое происходит при любой температуре, кипение происходит при определенной и постоянной для каждой жидкости температуре. Поэтому, например, при варке пищи нужно уменьшать огонь после того, как вода закипит, это даст экономию топлива, а температура воды все равно сохраняется постоянной во все время кипения.

Мы провели опыт, с целью проверить температуру кипения воды, молока и спирта.

В ходе проведения опыта мы поочередно нагревали до кипения в стеклянной колбе на спиртовке воду, молоко и спирт. При этом мы замеряли температуру жидкости при ее закипании.

Вывод: Вода и молоко кипят при температуре 100 ºС, а спирт – при 78º С.

100ºC время кипения график кипения воды и молока tºC

78ºC время кипения график кипения спирта

Кипение неразрывно связано с теплопроводностью, вследствие которой от поверхности нагрева к жидкости передается теплота. В кипящей жидкости устанавливается определенное распределение температуры. Теплопроводность воды очень мала, что мы подтвердили следующим опытом:

Мы взяли пробирку, наполнили водой, погрузили в нее кусочек льда, а чтобы он не всплыл вверх, придавили его металлической гайкой. При этом вода имела свободный доступ ко льду. Затем мы наклонили пробирку над пламенем спиртовки так, чтобы пламя касалось только верхней части пробирки. Через 2 минуты вода начала сверху кипеть, но на дна пробирки остался лед.

Загадка заключается в том, что на дне пробирки вода вовсе не кипит, а остается холодной, кипит она только вверху. Расширяясь от тепла, вода становится легче и не опускается на дно, а остается в верхней части пробирки. Течения теплой воды и перемешивание слоев будут происходить лишь в верхней части пробирки и не захватят нижних более плотных слоев. Нагревание может передаваться вниз лишь путем теплопроводности, но теплопроводность воды чрезвычайно мала.

На основании изложенного в предыдущих пунктах работы, мы выделяем особенности процесса кипения.

Особенности кипения

1) При кипении энергия затрачивается, а не выделяется.

2) Температура остается постоянной на протяжении всего процесса кипения.

3) У каждого вещества своя температура кипения.

4. От чего зависит температура кипения

При нормальном атмосферном давлении температура кипения постоянна, но с изменением давления на жидкость она меняется. Температура кипения тем выше, чем больше давление, производимое на жидкость и наоборот.

Мы провели несколько опытов, чтобы проверить верность данного утверждения.

Мы взяли колбу с водой, поставили греться на спиртовку. Заранее приготовили пробку с вставленной в нее резиновой грушей. Когда вода в колбе закипела, мы закрыли колбу пробкой с грушей. Затем мы нажали на грушу, при этом кипение к колбе прекратилось. При нажатии на грушу мы увеличили давление к колбе, и условие кипения нарушилось.

Вывод: С увеличением давления температура кипения увеличивается.

Мы взяли колбу с выпуклым дном, наполнили водой и довели воду до кипения. Затем закрыли колбу плотной пробкой и перевернули ее, закрепив в держателе. Дождались пока вода в колбе перестала кипеть и облили колбу кипятком. Никаких изменений к колбе не произошло. Далее, мы положили на дно колбы снег, и вода в колбе сразу закипела.

Это произошло потому, что снег охладил стенки флакона, вследствие этого пар внутри сгустился в водяные капли. А так как воздух из стеклянного флакона был выгнан еще при кипячении, то теперь вода подвержена в нем гораздо меньшему давлению. Но известно, что при уменьшении давления на жидкость, она кипит при температуре более низкой. Следовательно, в нашей колбе хотя и кипяток, но кипяток негорячий.

Вывод: С уменьшением давления температура кипения уменьшается.

Как известно, давление воздуха уменьшается с увеличением высоты над уровнем моря. Следовательно, температура кипения жидкости с увеличением высоты также уменьшается, а, соответственно, с уменьшением – увеличивается.

Так, американские ученые обнаружили на дне Тихого океана, в 400 км к западу от залива Пьюужет- Саунд сверхгорячий источник с температурой воды 400º С. Благодаря большому давлению на воды источника, расположенного на большой глубине, вода в нем даже при такой температуре не кипит.

А в горных районах, на высоте 3000м, где давление атмосферы составляет 70 кПа, вода кипит при 90 º С. Поэтому жителям этих районов, использующим такой кипяток, требуется значительно больше времени для приготовления пищи, чем жителям равнин. А сварить в этом кипятке например, куриное яйцо вообще невозможно, так как белок при температуре ниже 100 ºС не сворачивается.

В романе Жюля Верна «Дети капитана Гранта» путешественники на перевале в Андах обнаружили, что термометр, опущенный в закипевшую воду, показал всего лишь 87º С.

Этот факт подтверждает, что с увеличением высоты над уровнем моря, уменьшается температура кипения, так как уменьшается атмосферное давление.

5. Значение кипения

Кипение имеет огромное практическое значение как в быту, так и в производственных процессах.

Всем известно, что без кипения мы не смогли бы приготовить большинство блюд из рациона нашего питания. Выше, в работе, мы рассмотрели зависимость температуры кипения от давления. Благодаря полученным в этой области знаниям, хозяйки могут сейчас пользоваться скороварками. В скороварке пищу варят под давлением около 200 кПа. Температура кипения воды при этом достигает 120 º С. В воде такой температуры процесс «варения» происходит значительно быстрее, чем в обычном кипятке. Этим и объясняется название «скороварка».

Уменьшение температуры кипения жидкости тоже может иметь полезное значение. Так, например, при нормальном атмосферном давлении жидкий фреон кипит при температуре около 30ºС. При уменьшении же давления, температуру кипения фреона можно сделать ниже 0ºС. Это используется в испарителе холодильника. Благодаря работе компрессора в нем создается пониженное давление, и фреон начинает превращаться в пар, отнимая теплоту от стенок камеры. Благодаря этому и происходит понижение температуры внутри холодильника.

На процессе кипения основана работа таких необходимых в медицине аппаратов, как автоклав (прибор для стерилизации инструментов), дистиллятор (прибор для изготовления дистиллированной воды).

Различие в температурах кипения разных веществ находит широкое применение в технике, например в процессе перегонки нефти. При нагревании нефти до 360ºС та ее часть(мазут), которая имеет большую температуру кипения, остается в ней, а те ее части, у которых температура кипения ниже 360ºС, испаряются. Из образовавшегося пара получают бензин и некоторые другие виды топлива.

Мы перечислили лишь несколько примеров пользы кипения, из которых уже можно сделать выводы о необходимости и значимости этого процесса в нашей жизни.

6. Заключение

В ходе изучения темы кипение в вышеизложенной работе, мы выполнили поставленные в начале работы цели: изучили вопросы о понятии кипения, выделили этапы кипения,с объяснением причин происходящих процессов, определили признаки, условия и особенности кипения.

Чтобы приготовить различные вкусные блюда, часто необходима вода, и, если ее нагревать, то она рано или поздно закипит. Каждый образованный человек при этом знает, что вода начинает кипеть при температуре, равной ста градусам Цельсия, и при дальнейшем нагревании ее температура не меняется. Именно это свойство воды используется в кулинарии. Однако далеко не всем известно, что это бывает не всегда так. Вода может закипать при разной температуре в зависимости от условий, в которых она находится. Давайте попробуем разобраться, от чего зависит температура кипения воды, и как это нужно использовать.

При нагревании температура воды приближается к температуре кипения, и по всему объему образуются многочисленные пузырьки, внутри которых находится водяной пар. Плотность пара меньше, чем плотность воды, поэтому сила Архимеда, действующая на пузырьки, поднимает их на поверхность. При этом объем пузырьков то увеличивается, то уменьшается, поэтому закипающая вода издает характерные звуки. Достигая поверхности, пузырьки с водяным паром лопаются, по этой причине кипящая вода интенсивно булькает, выпуская водяной пар.

Температура кипения в явном виде зависит от давления, оказываемого на поверхность воды, что объясняется зависимостью давления насыщенного пара, находящегося в пузырьках, от температуры. При этом количество пара внутри пузырьков, а вместе с этим и их объем, увеличиваются до тех пор, пока давление насыщенного пара не будет превосходить давление воды. Это давление складывается из гидростатического давления воды, обусловленного гравитационным притяжением к Земле, и внешнего атмосферного давления. Поэтому температура кипения воды увеличивается при возрастании атмосферного давления и уменьшается при его уменьшении. Только в случае нормального атмосферного давления 760 мм.рт.ст. (1 атм.) вода кипит при 100 0 С. График зависимости температуры кипения воды от атмосферного давления представлен ниже:

Из графика видно, что если увеличить атмосферное давление до 1,45 атм, то вода будет кипеть уже при 110 0 С. При давлении воздуха 2,0 атм. вода закипит при 120 0 С и так далее. Увеличение температуры кипения воды может быть использовано для ускорения и улучшения процесса приготовления горячих блюд. Для этого изобрели скороварки – кастрюли с особой герметично закрывающейся крышкой, снабженные специальными клапанами для регулирования температуры кипения. Из-за герметичности давление в них повышается до 2-3 атм., что обеспечивает температуру кипения воды 120-130 0 С. Однако при этом нужно помнить, что использование скороварок сопряжено с опасностью: пар, выходящий из них, имеет большое давление и высокую температуру. Поэтому нужно быть максимально осторожными, чтобы не получить ожог.

Обратный эффект наблюдается, если атмосферное давление понижается. В этом случае температура кипения тоже уменьшается, что и происходит при увеличении высоты над уровнем моря:

В среднем, при подъеме на 300 м температура кипения воды уменьшается на 1 0 С и достаточно высоко в горах опускается до 80 0 С, что может привести к некоторым трудностям в приготовлении еды.

Если же дальше уменьшать давление, например, откачивая воздух из сосуда с водой, то при давлении воздуха 0,03 атм. вода будет кипеть уже при комнатной температуре, и это достаточно необычно, так как привычная температура кипения воды – 100 0 С.

1.1 Кипение - физическое явление

Кипение - интенсивный переход жидкости в пар, вследствие образования и роста пузырьков пара по всему объёму жидкости при определенной температуре. Кипение может происходить лишь при определённой температуре и давлении.

В жидкости всегда имеется растворенный газ, степень растворения которого понижается с ростом температуры. При нагревании жидкости снизу газ начинает выделяться в виде пузырьков у стенок сосуда. Это центры парообразования. В эти пузырьки происходит испарение жидкости. Поэтому в них, кроме воздуха, находится насыщенный пар, давление которого с ростом температуры быстро увеличивается, и пузырьки растут в объеме, а следовательно, увеличиваются действующие на них силы Архимеда. Когда выталкивающая сила станет больше силы тяжести пузырька, он начинает всплывать. Но пока жидкость не будет равномерно прогрета, по мере всплытия объем пузырька уменьшается при попадании в менее нагретые слои (давление насыщенного пара уменьшается с понижением температуры), пар в нём конденсируется, теплота которая выделяется при конденсации ускоряет прогревание жидкости по всему объёму. И, не достигнув свободной поверхности, пузырьки исчезают (захлопываются), вот почему мы слышим характерный шум перед закипанием. Когда температура жидкости выравняется, объем пузырька при подъеме будет возрастать, так как давление насыщенного пара не изменяется, а внешнее давление на пузырек, представляющее собой сумму давления жидкости, находящейся над пузырьком, и атмосферного давления уменьшается. Пузырек достигает свободной поверхности жидкости, лопается, и насыщенный пар выходит наружу - жидкость закипает. Давление внутри пузырька с паром складывается из давления насыщенных паров, гидростатического и лапласовского давления (капиллярного). Если последним можно пренебречь, то условием для кипения будет равенство давления насыщенного пара и атмосферного давления.

Таким образом, для кипения жидкости должны выполняться условия:

  1. Наличие центров парообразования
  2. Постоянное подведение тепла. (Q=Lm)
  3. Равенство суммы атмосферного и гидрастатического давления суммарному давлению насыщенного пара.

1.2 Факторы, влияющие на температуру кипения жидкости

  • Кипение вещества и атмосферное давление

Температура кипения воды равна 100°С; можно подумать, что это неотъемлемое свойство воды, что вода, где бы и в каких условиях она ни находилась, всегда будет кипеть при 100°С.

Но это не так, и об этом прекрасно осведомлены жители высокогорных селений.

Вблизи вершины Эльбруса имеется домик для туристов и научная станция. Новички иногда удивляются, "как трудно сварить яйцо в кипятке" или "почему кипяток не обжигает". В этих условиях им указывают, что вода кипит на вершине Эльбруса уже при 82°С.

Физическим фактором, влияющим на температуру кипения является давление, действующее на поверхность жидкости.

Помещая подогреваемую воду под колокол и накачивая или выкачивая оттуда воздух, можно убедиться, что температура кипения растет при возрастании давления и падает при его уменьшении.

Итак, определенному внешнему давлению соответствует определенная температура кипения. Но это утверждение можно и "перевернуть", сказав так: каждой температуре кипения воды соответствует свое определенное давление.

При повышении атмосферного давления температура кипения повышается, в среднем на 1°С при изменении давления на 26 мм. рт. ст.

  • Кипение вещества с примесями

Как правило, температура кипения при нормальном атмосферном давлении приводится как одна из основных характеристик химически чистых веществ. А если мы добавим в жидкость сахар или соль?

Жидкость кипит при температуре при которой общее давление насыщенного пара становится равным внешнему давлению. Если растворять нелетучее вещество, т.е. давлением его насыщенных паров над раствором можно пренебречь, то давление в пузырьках складывается из давления насыщенного пара каждого компонента смеси жидкости. Р 1 + Р 2 = Р атм Доля каждого парциального давления зависит от температуры и количества вещества. В случае растворения нелетучего вещества на поверхности оказывается меньше молекул растворителя (чистой жидкости), способных испариться - часть места занимают молекулы примеси (растворённого вещества). Тогда давление насыщенных паров над раствором при любой температуре будет меньше, чем над чистым растворителем и равенство его внешнему давлению будет достигаться при более высокой температуре. Таким образом, температура кипения раствора нелетучего вещества всегда выше, чем температура кипения чистой жидкости при том же давлении. Нелетучие примеси повышают температуру кипения.

Таким образом, температура кипения зависит от наличия примесей, обычно увеличиваясь с ростом концентрации примесей.

  • Кипение различных веществ

У каждой жидкости своя температура кипения. Она зависит от сил притяжения между молекулами (у газов они меньше, чем у жидкостей и твёрдых веществ, и у жидкостей меньше, чем у твёрдых веществ). Чем быстрей произойдет насышение пара над веществом (давление пара вещества = окружающему давлению), тем быстрей оно закипит. Так, например: t кип этилового спирта = 78,3 о С; t кип железа = 3200 о С; t кип азота = -195,3 о С.

Поскольку давление насыщающего пара однозначно определяется температурой, а кипение жидкости наступает в тот момент, когда давление насыщающих паров этой жидкости равно внешнему давлению, температура кипения должна зависеть от внешнего давления. С помощью опытов легко показать, что при уменьшении внешнего давления температура кипения понижается, а при увеличении давления - повышается.

Кипение жидкости при пониженном давлении можно показать с помощью следующего опыта. В стакан наливают воду из водопровода и опускают в нее термометр. Стакан с водой помещают под стеклянный колпак вакуумной установки и включают насос. Когда давление под колпаком достаточно понизится, вода в стакане начинает кипеть. Так как на парообразование затрачивается энергия, то температура воды в стакане при кипении начинает понижаться, и при хорошей работе насоса вода наконец закерзает.

Нагревание воды до высоких температур осуществляют в котлах и автоклавах. Устройство автоклава показано на рис. 8.6, где К - предохранительный клапан, - рычаг, прижимающий клапан, М - манометр. При давлениях больше 100 атм воду нагревают до температуры выше 300 °С.

Таблица 8.2. Точки кипения некоторых веществ

Температура кипения жидкости при нормальном атмосферном давлении называется точкой кипения. Из табл. 8.1 и 8.2 вцдно, что давление насыщающих паров для эфира, воды и спирта в точке кипения равно 1,013 105 Па (1 атм).

Из изложенного выше следует, что в глубоких шахтах вода должна кипеть при температуре выше 100 °С, а в горных местностях - ниже 100 °С. Поскольку температура кипения воды зависит от высоты над уровнем моря, на шкале термометра вместо температуры можно указать ту высоту, на которой кипит вода при этой температуре. Определение высоты с помощью такого термометра называется гипсометрией.

Опыт показывает, что температура кипения раствора всегда выше, чем температура кипения чистого растворителя, и возрастает при увеличении концентрации раствора. Однако температура паров над поверхностью кипящего раствора равна температуре кипения чистого растворителя. Поэтому для определения температуры кипения чистой жидкости термометр лучше помещать не в жидкость, а в пары над поверхностью кипящей жидкости.

Процесс кипения тесно связан с наличием растворенного газа в жидкости. Если из жидкости удалить растворенный в ней газ, например, продолжительным кипячением, то можно нагревать эту жидкость до температуры, заметно превышающей температуру ее кипения. Такую жидкость называют перегретой. При отсутствии газовых пузырьков зарождению мельчайших пузырьков пара, которые могли бы стать центрами парообразования, препятствует лапласовское давление, которое при малом радиусе пузырька велико. Этим и объясняется перегрев жидкости. Когда она все же закипает, кипение происходит очень бурно.

Зависимость температуры кипения от давления

Температура кипения воды равна 100 °C; можно подумать, что это неотъемлемое свойство воды, что вода, где бы и в каких условиях она ни находилась, всегда будет кипеть при 100 °C.

Но это не так, и об этом прекрасно осведомлены жители высокогорных селений.

Вблизи вершины Эльбруса имеется домик для туристов и научная станция. Новички иногда удивляются, «как трудно сварить яйцо в кипятке» или «почему кипяток не обжигает». В этих случаях им указывают, что вода кипит на вершине Эльбруса уже при 82 °C.

В чем же тут дело? Какой физический фактор вмешивается в явление кипения? Какое значение имеет высота над уровнем моря?

Этим физическим фактором является давление, действующее на поверхность жидкости. Не нужно забираться на вершину горы, чтобы проверить справедливость сказанного.

Помещая подогреваемую воду под колокол и накачивая или выкачивая оттуда воздух, можно убедиться, что температура кипения растет при возрастании давления и падает при его уменьшении.

Вода кипит при 100 °C только при определенном давлении – 760 мм Hg.

Кривая температуры кипения в зависимости от давления показана на рис. 98. На вершине Эльбруса давление равно 0,5 атм, этому давлению и соответствует температура кипения 82 °C.

А вот водой, кипящей при 10–15 мм Нg, можно освежиться в жаркую погоду. При этом давлении температура кипения упадет до 10–15 °C.

Можно получить даже «кипяток», имеющий температуру замерзающей воды. Для этого придется снизить давление до 4,6 мм Hg.

Интересную картину можно наблюдать, если поместить открытый сосуд с водой под колокол и откачивать воздух. Откачка заставит воду закипеть, но кипение требует тепла. Взять его неоткуда, и воде придется отдать свою энергию. Температура кипящей воды начнет падать, но так как откачка продолжается, то падает и давление. Поэтому кипение не прекратится, вода будет продолжать охлаждаться и в конце концов замерзнет.

Такое кипение холодной воды происходит не только при откачке воздуха. Например, при вращении гребного корабельного винта давление в быстро движущемся около металлической поверхности слое воды сильно падает и вода в этом слое закипает, т.е. в ней появляются многочисленные наполненные паром пузырьки. Это явление называется кавитацией (от латинского слова cavitas – полость).

Снижая давление, мы понижаем температуру кипения. А увеличивая его? График, подобный нашему, отвечает на этот вопрос. Давление в 15 атм может задержать кипение воды, оно начнется только при 200 °C, а давление в 80 атм заставит воду закипеть лишь при 300 °C.

Итак, определенному внешнему давлению соответствует определенная температура кипения. Но это утверждение можно и «перевернуть», сказав так: каждой температуре кипения воды соответствует свое определенное давление. Это давление называется упругостью пара.

Кривая, изображающая температуру кипения в зависимости от давления, является одновременно и кривой упругости пара в зависимости от температуры.

Цифры, нанесенные на график температуры кипения (или на график упругости пара), показывают, что упругость пара меняется очень резко с изменением температуры. При 0 °C (т.е. 273 K) упругость пара равна 4,6 мм Hg, при 100 °C (373 K) она равна 760 мм, т. е, возрастает в 165 раз. При повышении температуры вдвое (от 0 °C, т.е. 273 K, до 273 °C, т.е. 546 K) упругость пара возрастает с 4,6 мм Hg почти до 60 атм, т.е. примерно в 10000 раз.

Поэтому, напротив, температура кипения меняется с давлением довольно медленно. При изменении давления вдвое – от 0,5 атм до 1 атм, температура кипения возрастает от 82 °C (т.е. 355 K) до 100 °C (т.е. 373 K) и при изменении вдвое от 1 атм до 2 атм – от 100 °C (т.е. 373 K) до 120 °C (т.е. 393 K).

Та же кривая, которую мы сейчас рассматриваем, управляет и конденсацией (сгущением) пара в воду.

Превратить пар в воду можно либо сжатием, либо охлаждением.

Как во время кипения, так и в процессе конденсации точка не сдвинется с кривой, пока превращение пара в воду или воды в пар не закончится полностью. Это можно сформулировать еще и так: в условиях нашей кривой и только при этих условиях возможно сосуществование жидкости и пара. Если при этом не подводить и не отнимать тепла, то количества пара и жидкости в закрытом сосуде будут оставаться неизменными. Про такие пар и жидкость говорят, что они находятся в равновесии, и пар, находящийся в равновесии со своей жидкостью, называют насыщенным.

Кривая кипения и конденсации имеет, как мы видим, еще один смысл – это кривая равновесия жидкости и пара. Кривая равновесия делит поле диаграммы на две части. Влево и вверх (к большим температурам и меньшим давлениям) расположена область устойчивого состояния пара. Вправо и вниз – область устойчивого состояния жидкости.

Кривая равновесия пар – жидкость, т.е. кривая зависимости температуры кипения от давления или, что то же самое, упругости пара от температуры, примерно одинакова для всех жидкостей. В одних случаях изменение может быть несколько более резким, в других – несколько более медленным, но всегда упругость пара быстро растет с увеличением температуры.

Уже много раз мы пользовались словами «газ» и «пар». Эти два слова довольно равноправны. Можно сказать: водяной газ есть пар воды, газ кислород есть пар кислородной жидкости. Все же при пользовании этими двумя словами сложилась некоторая привычка. Так как мы привыкли к определенному относительно небольшому интервалу температур, то слово «газ» мы применяем обычно к тем веществам, упругость пара которых при обычных температурах выше атмосферного давления. Напротив, о паре мы говорим тогда, когда при комнатной температуре и давлении атмосферы вещество более устойчиво в виде жидкости.

Из книги Физики продолжают шутить автора Конобеев Юрий

К квантовой теории абсолютного нуля температуры Д. Бак, Г. Бете, В. Рицлер (Кембридж) «К квантовой теории абсолютного нуля температуры» и заметки, переводы которых помещены ниже: К квантовой теории абсолютного нуля температуры Движение нижней челюсти у крупного

Из книги Физики шутят автора Конобеев Юрий

К квантовой теории абсолютного нуля температуры Ниже помещен перевод заметки» написанной известными физиками и опубликованной в «Natur-wissenschaften». Редакторы журнала «попались на удочку громких имен» и, не вдаваясь в существо написанного, направили полученный материал в

Из книги Медицинская физика автора Подколзина Вера Александровна

6. Математическая статистика и корреляционная зависимость Математическая статистика – наука о математических методах систематизации и использования статистических данных для решения научных и практических задач. Математическая статистика тесно примыкает к теории автора

Из книги автора

Изменение давления с высотой С изменением высоты давление падает. Впервые это было выяснено французом Перье по поручению Паскаля в 1648 г. Гора Пью де Дом, около которой жил Перье, была высотой 975 м. Измерения показали, что ртуть в торричеллиевой трубке падает при подъеме на

Из книги автора

Влияние давления на температуру плавления Если изменить давление, то изменится и температура плавления. С такой же закономерностью мы встречались, когда говорили о кипении. Чем больше давление, тем выше температура кипения. Как правило, это верно и для плавления. Однако



Поделитесь с друзьями или сохраните для себя:

Загрузка...