Выпуклые многоугольники. Определение выпуклого многоугольника

Данные геометрические фигуры окружают нас повсюду. Выпуклые многоугольники бывают природными, например, пчелиные соты или искусственными (созданными человеком). Эти фигуры используются в производстве различных видов покрытий, в живописи, архитектуре, украшениях и т.д. Выпуклые многоугольники обладают тем свойством, что все их точки располагаются по одну сторону от прямой, что проходит через пару соседних вершин этой геометрической фигуры. Существуют и другие определения. Выпуклым называется тот многоугольник, который расположен в единой полуплоскости относительно любой прямой, содержащей одну из его сторон.

В курсе элементарной геометрии всегда рассматриваются исключительно простые многоугольники. Чтобы понять все свойства таких необходимо разобраться с их природой. Для начала следует уяснить, что замкнутой называется любая линия, концы которой совпадают. Причем фигура, образованная ею, может иметь самые разные конфигурации. Многоугольником называют простую замкнутую ломаную линию, у которой соседние звенья не располагаются на одной прямой. Ее звенья и вершины являются, соответственно, сторонами и вершинами этой геометрической фигуры. Простая ломаная не должна иметь самопересечений.

Вершины многоугольника называют соседними, в том случае если они представляют собой концы одной из его сторон. Геометрическая фигура, у которой имеется n-е число вершин, а значит, и n-е количество сторон, называется n-угольником. Саму ломаную линию называют границей или контуром этой геометрической фигуры. Многоугольной плоскостью или плоским многоугольником называют конечную часть любой плоскости, им ограниченной. Соседними сторонами этой геометрической фигуры называют отрезки ломаной линии, исходящие из одной вершины. Они будут не соседними, если исходят их разных вершин многоугольника.

Другие определения выпуклых многоугольников

В элементарной геометрии существует еще несколько эквивалентных по своему значению определений, указывающих на то, какой многоугольник называется выпуклым. Причем все эти формулировки в одинаковой степени верны. Выпуклым считается тот многоугольник, у которого:

Каждый отрезок, что соединяет две любые точки внутри него, полностью лежит в нем;

Внутри него лежат все его диагонали;

Любой внутренний угол не превышает 180°.

Многоугольник всегда разбивает плоскость на 2 части. Одна из них - ограниченная (она может быть заключена в круг), а другая - неограниченная. Первую называют внутренней областью, а вторую - внешней областью этой геометрической фигуры. Данный многоугольник является пересечением (иными словами - общей составляющей) нескольких полуплоскостей. При этом каждый отрезок, имеющий концы в точках, которые принадлежат многоугольнику, полностью принадлежит ему.

Разновидности выпуклых многоугольников

Определение выпуклого многоугольника не указывает на то, что их существует множество видов. Причем у каждого из них имеются определенные критерии. Так, выпуклые многоугольники, у которых есть внутренний угол равный 180°, называются слабовыпуклыми. Выпуклая геометрическая фигура, что имеет три вершины, называется треугольником, четыре - четырехугольником, пять - пятиугольником и т. д. Каждый из выпуклых n-угольников отвечает следующему важнейшему требованию: n должно равняться или быть больше 3. Каждый из треугольников является выпуклым. Геометрическая фигура данного типа, у которой все вершины располагаются на одной окружности, называется вписанной в окружность. Выпуклый многоугольник называют описанным, если все его стороны около окружности прикасаются к ней. Два многоугольника называют равными только в том случае, когда при помощи наложения их можно совместить. Плоским многоугольником называют многоугольную плоскость (часть плоскости), что ограничена этой геометрической фигурой.

Правильные выпуклые многоугольники

Правильными многоугольниками называют геометрические фигуры с равными углами и сторонами. Внутри них имеется точка 0, которая находится на одинаковом расстоянии от каждой из его вершин. Ее называют центром этой геометрической фигуры. Отрезки, соединяющие центр с вершинами этой геометрической фигуры называют апофемами, а те, что соединяют точку 0 со сторонами - радиусами.

Правильный четырехугольник - квадрат. Правильный треугольник называют равносторонним. Для таких фигур существует следующее правило: каждый угол выпуклого многоугольника равен 180° * (n-2)/ n,

где n - число вершин этой выпуклой геометрической фигуры.

Площадь любого правильного многоугольника определяют по формуле:

где p равно половине суммы всех сторон данного многоугольника, а h равно длине апофемы.

Свойства выпуклых многоугольников

Выпуклые многоугольники имеют определенные свойства. Так, отрезок, который соединяет любые 2 точки такой геометрической фигуры, обязательно располагается в ней. Доказательство:

Предположим, что Р - данный выпуклый многоугольник. Берем 2 произвольные точки, например, А, В, которые принадлежат Р. По существующему определению выпуклого многоугольника эти точки расположены в одной стороне от прямой, что содержит любую сторону Р. Следовательно, АВ также имеет это свойство и содержится в Р. Выпуклый многоугольник всегда возможно разбить на несколько треугольников абсолютно всеми диагоналями, которые проведены из одной его вершины.

Углы выпуклых геометрических фигур

Углы выпуклого многоугольника - это углы, что образованы его сторонами. Внутренние углы находятся во внутренней области данной геометрической фигуры. Угол, что образован его сторонами, которые сходятся в одной вершине, называют углом выпуклого многоугольника. с внутренними углами данной геометрической фигуры, называют внешними. Каждый угол выпуклого многоугольника, расположенный внутри него, равен:

где х - величина внешнего угла. Эта простая формула действует в отношении любых геометрических фигур такого типа.

В общем случае, для внешних углов существует следующие правило: каждый угол выпуклого многоугольника равен разности между 180° и величиной внутреннего угла. Он может иметь значения в пределах от -180° до 180°. Следовательно, когда внутренний угол составляет 120°, внешний будет иметь величину в 60°.

Сумма углов выпуклых многоугольников

Сумма внутренних углов выпуклого многоугольника устанавливается по формуле:

где n - число вершин n-угольника.

Сумма углов выпуклого многоугольника вычисляется довольно просто. Рассмотрим любую такую геометрическую фигуру. Для определения суммы углов внутри выпуклого многоугольника необходимо соединить одну из его вершин с другими вершинами. В результате такого действия получается (n-2) треугольника. Известно, что сумма углов любых треугольников всегда равна 180°. Поскольку их количество в любом многоугольнике равняется (n-2), сумма внутренних углов такой фигуры равняется 180° х (n-2).

Сумма углов выпуклого многоугольника, а именно любых двух внутренних и смежных с ними внешних углов, у данной выпуклой геометрической фигуры всегда будет равна 180°. Исходя из этого, можно определить сумму всех ее углов:

Сумма внутренних углов составляет 180° * (n-2). Исходя из этого, сумму всех внешних углов данной фигуры устанавливают по формуле:

180° * n-180°-(n-2)= 360°.

Сумма внешних углов любого выпуклого многоугольника всегда будет равна 360° (независимо от количества его сторон).

Внешний угол выпуклого многоугольника в общем случае представляется разностью между 180° и величиной внутреннего угла.

Другие свойства выпуклого многоугольника

Помимо основных свойств данных геометрических фигур, у них есть и другие, которые возникают при манипуляциях с ними. Так, любой из многоугольников может быть разделен на несколько выпуклых n-угольников. Для этого необходимо продолжить каждую из его сторон и разрезать эту геометрическую фигуру вдоль этих прямых линий. Разбить любой многоугольник на несколько выпуклых частей можно и таким образом, чтобы вершины каждого из кусков совпадали со всеми его вершинами. Из такой геометрической фигуры можно очень просто сделать треугольники путем проведения всех диагоналей из одной вершины. Таким образом, любой многоугольник, в конечном счете, можно разбить на определенное количество треугольников, что оказывается весьма полезным при решении различных задач, связанных с такими геометрическими фигурами.

Периметр выпуклого многоугольника

Отрезки ломаной линии, называемые сторонами многоугольника, чаще всего обозначаются следующими буквами: ab, bc, cd, de, ea. Это стороны геометрической фигуры с вершинами a, b, c, d, e. Сумма длины всех сторон этого выпуклого многоугольника называют его периметром.

Окружность многоугольника

Выпуклые многоугольники могут быть вписанными и описанными. Окружность, касающаяся всех сторон этой геометрической фигуры, называется вписанной в нее. Такой многоугольник называют описанным. Центр окружности, которая вписана в многоугольник, представляет собой точку пересечения биссектрис всех углов внутри данной геометрической фигуры. Площадь такого многоугольника равняется:

где r - радиус вписанной окружности, а p - полупериметр данного многоугольника.

Окружность, содержащую вершины многоугольника, называют описанной около него. При этом данная выпуклая геометрическая фигура называется вписанной. Центр окружности, которая описана около такого многоугольника, представляет собой точку пересечения так называемых серединных перпендикуляров всех сторон.

Диагонали выпуклых геометрических фигур

Диагонали выпуклого многоугольника - это отрезки, которые соединяют не соседние вершины. Каждая из них лежит внутри этой геометрической фигуры. Число диагоналей такого n-угольника устанавливается по формуле:

N = n (n - 3)/ 2.

Число диагоналей выпуклого многоугольника играет важную роль в элементарной геометрии. Число треугольников (К), на которые возможно разбить каждый выпуклый многоугольник, вычисляется по следующей формуле:

Количество диагоналей выпуклого многоугольника всегда зависит от числа его вершин.

Разбиение выпуклого многоугольника

В некоторых случаях для решения геометрических задач необходимо разбить выпуклый многоугольник на несколько треугольников с непересекающимися диагоналями. Эту проблему можно решить путем выведения определенной формулы.

Определение задачи: назовем правильным некое разбиение выпуклого n-угольника на несколько треугольников диагоналями, пересекающимися только в вершинах этой геометрической фигуры.

Решение: Предположим, что Р1, Р2 , Р3 … , Pn - вершины этого n-угольника. Число Xn - количество его разбиений. Внимательно рассмотрим полученную диагональ геометрической фигуры Pi Pn. В любом из правильных разбиений Р1 Pn принадлежит определенному треугольнику Р1 Pi Pn, у которого 1

Пусть і = 2 будет одной группой правильных разбиений, всегда содержащей диагональ Р2 Pn. Количество разбиений, которые входят в нее, совпадает с числом разбиений (n-1)-угольника Р2 Р3 Р4… Pn. Иными словами, оно равняется Xn-1.

Если і = 3, то эта другая группа разбиений будет всегда содержать диагонали Р3 Р1 и Р3 Pn. При этом количество правильных разбиений, что содержатся в данной группе, будет совпадать с числом разбиений (n-2)-угольника Р3 Р4… Pn. Другими словами, оно будет равняться Xn-2.

Пусть і = 4, тогда среди треугольников правильное разбиение непременно будет содержать треугольник Р1 Р4 Pn, к которому будет примыкать четырехугольник Р1 Р2 Р3 Р4, (n-3)-угольник Р4 Р5… Pn. Количество правильных разбиений такого четырехугольника равняется Х4, а число разбиений (n-3)-угольника равняется Xn-3. Исходя из всего изложенного, можно сказать, что полное количество правильных разбиений, которые содержатся в данной группе, равняется Xn-3 Х4. Другие группы, у которых і = 4, 5, 6, 7… будут содержать Xn-4 Х5, Xn-5 Х6, Xn-6 Х7 … правильных разбиений.

Пусть і = n-2, то количество правильных разбиений в данной группе будет совпадать с числом разбиений в группе, у которой i=2 (другими словами, равняется Xn-1).

Так как Х1 = Х2 = 0, Х3=1, Х4=2…, то число всех разбиений выпуклого многоугольника равно:

Xn = Xn-1 + Xn-2 + Xn-3 Х4 + Xn-4 Х5 + … + Х 5 Xn-4 + Х4 Xn-3 + Xn-2 + Xn-1.

Х5 = Х4 + Х3 + Х4 = 5

Х6 = Х5 + Х4 + Х4 + Х5 = 14

Х7 = Х6 + Х5 + Х4 * Х4 + Х5 + Х6 = 42

Х8 = Х7 + Х6 + Х5 * Х4 + Х4 * Х5 + Х6 + Х7 = 132

Количество правильных разбиений, пересекающих внутри одну диагональ

При проверке частных случаев, можно прийти к предположению, что число диагоналей выпуклых n-угольников равняется произведению всех разбиений этой фигуры на (n-3).

Доказательство данного предположения: представим, что P1n = Xn * (n-3), тогда любой n-угольник возможно разбить на (n-2)-треугольников. При этом из них может быть сложен (n-3)-четырехугольник. Наряду с этим, у каждого четырехугольника будет диагональ. Поскольку в этой выпуклой геометрической фигуре могут быть проведены две диагонали, это значит, что и в любых (n-3)-четырехугольниках возможно провести дополнительные диагонали (n-3). Исходя из этого, можно сделать вывод, что в любом правильном разбиении имеется возможность провести (n-3)-диагонали, отвечающие условиям этой задачи.

Площадь выпуклых многоугольников

Нередко при решении различных задач элементарной геометрии появляется необходимость определить площадь выпуклого многоугольника. Предположим, что (Xi. Yi), i = 1,2,3… n представляет собой последовательность координат всех соседних вершин многоугольника, не имеющего самопересечений. В этом случае его площадь вычисляется по такой формуле:

S = ½ (∑ (X i + X i + 1) (Y i + Y i + 1)),

где (Х 1 , Y 1) = (X n +1 , Y n + 1).

Многоугольник — Математика 1 класс (Моро)

Краткое описание:

Вы уже многое знаете о геометрии, но, наверное, хотите знать еще больше. Поэтому наше путешествие в удивительную страну Геометрию продолжается. Вам хорошо знакома такая фигура, как отрезок. А что получится, если три отрезка соединятся между собой? Верно, получится ломаная линия. Вы, конечно же, помните, что ломаные линии могут быть замкнутыми и незамкнутыми. Если три отрезка соединить в замкнутую ломаную линию, то получится … Догадались? Получится треугольник. А можно ли получить другие фигуры из ломаной линии? Конечно, можно! Все зависит от количества звеньев ломаной линии. Так, например, если звеньев будет четыре, то получится четырехугольник, пять звеньев – пятиугольник и так далее. А теперь подумайте, как мы можем назвать одним словом фигуры, образованные замкнутой ломаной линией? Воспользуйтесь подсказкой: у всех этих фигур звенья образуют разное количество углов. Такие фигуры мы назовем многоугольниками. Многоугольники встречаются вас на каждом шагу. Так, крышка парты – это четырехугольник, некоторые дорожные знаки – треугольники, клумбы могут пятиугольниками, шестиугольниками. Тема «Многоугольники» неисчерпаема. Вы встретитесь с ней не только в первом классе, но и будете постоянно встречаться с ней все время, пока обучаетесь в школе. Подружитесь с многоугольниками!

Многоугольник — Математика 1 класс (Моро)

Краткое описание:

Вы уже многое знаете о геометрии, но, наверное, хотите знать еще больше. Поэтому наше путешествие в удивительную страну Геометрию продолжается. Вам хорошо знакома такая фигура, как отрезок. А что получится, если три отрезка соединятся между собой? Верно, получится ломаная линия. Вы, конечно же, помните, что ломаные линии могут быть замкнутыми и незамкнутыми. Если три отрезка соединить в замкнутую ломаную линию, то получится … Догадались? Получится треугольник. А можно ли получить другие фигуры из ломаной линии? Конечно, можно! Все зависит от количества звеньев ломаной линии. Так, например, если звеньев будет четыре, то получится четырехугольник, пять звеньев – пятиугольник и так далее. А теперь подумайте, как мы можем назвать одним словом фигуры, образованные замкнутой ломаной линией? Воспользуйтесь подсказкой: у всех этих фигур звенья образуют разное количество углов. Такие фигуры мы назовем многоугольниками. Многоугольники встречаются вас на каждом шагу. Так, крышка парты – это четырехугольник, некоторые дорожные знаки – треугольники, клумбы могут пятиугольниками, шестиугольниками. Тема «Многоугольники» неисчерпаема. Вы встретитесь с ней не только в первом классе, но и будете постоянно встречаться с ней все время, пока обучаетесь в школе. Подружитесь с многоугольниками!

Цели занятия: На этом занятии вы познакомитесь с понятиями многоугольника и четырехугольниками, узнаете, чему равна сумма внутренних и внешних углов выпуклого многоугольника.

Многоугольники

Рассмотрим понятие «многоугольник». Интуитивно вы, конечно, представляете, что это за геометрическая фигура. Вы встречались с многоугольниками и в начальной школе, и в 5–6 классах. Вам знакомы частные случаи многоугольников: треугольник, прямоугольник, квадрат.

Сформулируем определение многоугольника и приведем примеры.

Для определения понятия «многоугольник» также используют понятия «ломаная». Ломаная – это геометрическая фигура, которая состоит из отрезков, последовательно соединенных друг с другом.

Используя понятие «ломаная», можно дать такое определение понятию «Многоугольник».

Рассмотрим примеры фигур, которые являются многоугольниками и не являются ими. На рисунках 1 и 2 приведены примеры многоугольников: выпуклые пятиугольник и семиугольник на рисунке 1 и невыпуклые четырехугольник и шестиугольник на рисунке 2.

Отрезки, из которых состоит ломаная, называются сторонами многоугольника , а концы отрезков – его вершинами .

Задание 1.

Изобразите у себя в тетрадях семиугольник, изображенный на рисунке 1. Продолжите его стороны за его вершины. Убедитесь в том, что для него справедливо наше утверждение.

Обозначьте вершины семиугольника. Выпишите их к себе в тетрадь. Выпишите стороны семиугольника.

Как вы видите, в любом n-угольнике количество вершин равно количеству сторон .

Теперь посмотрим на изображение невыпуклого четырехугольника. Проделаем ту же операцию с ним: продолжим его стороны за его вершины (рисунок 4).

Задание 2.

Изобразите у себя в тетрадях шестиугольник, изображенный на рисунке 2. Продолжите его стороны за его вершины. Убедитесь в том, что для него справедливо наше утверждение.

На рисунке 5 изображена замкнутая ломаная, которая многоугольников не является. Почему?

Многоугольником также называют геометрическую фигуру, состоящую из его сторон и внутренней области.

Поработайте с материалами первой части видеоурока «Многоугольники».

В материалах видеоурока сформулировано определение периметра многоугольника .

Определение. Периметром многоугольника называется сумма всех его сторон.

Кроме того, вы узнали, что среди многоугольников, как и среди треугольников, выделяются правильные многоугольники .

Определение. Правильным называется выпуклый многоугольник, все стороны и все углы которого равны.

Кроме таких элементов многоугольника как вершины и стороны, выделим диагонали многоугольника .

Определение. Диагональю многоугольника называется отрезок, соединяющий несмежные вершины.

Сумма внутренних и внешних углов выпуклого многоугольника

Прежде чем переходить к изучению следующей части занятия, поработайте с электронным образовательным ресурсом « ».

Теперь сформулируем теорему о сумме углов выпуклого многоугольника.

Теорема (о сумме углов выпуклого многоугольника).
Сумма углов выпуклого n -угольника равна .

С доказательством этой теоремы познакомьтесь, поработав с материалами второй части видеоурока «Многоугольники».

Задание 3.

Запишите два варианта доказательства этой теоремы себе в тетрадь. Если у вас возникли вопросы, обсудите их на или в видеокомнате.

Пример 1.

Найдем сумму внутренних углов некоторых выпуклых многоугольников.

1. Четырехугольник

В четырехугольнике n = 4. Поэтому сумма углов четырехугольника равна

2. Пятиугольник

В пятиугольнике n = 5. Поэтому сумма углов пятиугольника равна

3. Шестиугольник

В шестиугольнике n = 6. Поэтому сумма углов шестиугольника равна

4. Восьмиугольник

В восьмиугольнике n = 8. Поэтому сумма углов восьмиугольника равна

5. Десятиугольник

В десятиугольнике n = 10. Поэтому сумма углов десятиугольника равна

В том случае, когда многоугольник является правильным, мы можем найти величину каждого его угла. Действительно, так как все углы правильного многоугольника равны, то величина каждого его угла равна .

Пример 2.

Найдем величину угла для некоторых правильных многоугольников.

1. Пятиугольник

В пятиугольнике n = 5. Поэтому угол в пятиугольнике равен

2. Шестиугольник

В шестиугольнике n = 6. Поэтому угол в пятиугольнике равен

3. Восьмиугольник

В восьмиугольнике n = 8. Поэтому угол в восьмиугольнике равен

4. Десятиугольник

Многоугольники 1. Что такое многоугольник? 2. Какая зависимость существует между числом вершин, числом углов и числом сторон многоугольника? Ответ: число вершин многоугольника равно числу его сторон и числу его углов. 3. Чем отличается друг от друга два пятиугольника и два шестиугольника? 4. Какой многоугольник называется правильным? Ответ: многоугольник называется правильным, если все стороны и все углы у него равны. Правильный пятиугольник Правильный шестиугольник Неправильный пятиугольник Неправильный шестиугольник


5. Какие правильные многоугольники мы уже изучали, назовите их свойства? 6. Чем отличаются многоугольники, изображенные на рисунке 1, от многоугольников, изображенных на рисунке 2? Рисунок 1 Рисунок 2 Выпуклые многоугольники Невыпуклые многоугольники (вогнутые) Ответ: если весь многоугольник лежит по одну сторону от любой из его сторон, то он в вв выпуклый, если нет, то в вв вогнутый. 7. Что такое диагональ многоугольника? 8. Начертите два четырехугольника, проведите их диагонали. 9. Что вы заметили? Ответ: выпуклый многоугольник содержит все свои диагонали, вогнутый – не все!




Домашнее задание 1. Выучить записи в тетради Выполнить задания 15 и 18 на стр.82, все начертить в домашней тетради! Дополнительное задание Рабочая тетрадь 3, стр. 38, задания 29 и 30


Решение задач 1. Является ли шестиугольник, изображенный на рисунке 1, правильным? Рис Является ли восьмиугольник, изображенный на рисунке 2, правильным, а треугольник? Рисунок 3 v vv v v 2. Определите, какие из многоугольников, представленных на рисунке 3, являются выпуклыми, а какие вогнутыми. Рис. 2


4. Сколько диагоналей имеет треугольник? 5. Сколько диагоналей имеет четырехугольник? 6. Сколько диагоналей имеет пятиугольник? 7. Сколько диагоналей имеет шестиугольник? 8. Существует ли многоугольник, число диагоналей которого равно числу его сторон? Решение задач Нет диагоналей Две диагонали Пять диагоналей Девять диагоналей Пятиугольник!



Поделитесь с друзьями или сохраните для себя:

Загрузка...