Бета-распад на связанное состояние атома. Типы ядерных превращений, альфа и бета-распад Что происходит при бета распаде

Бета-распад

β-распад, радиоактивный распад атомного ядра, сопровождающийся вылетом из ядра электрона или позитрона. Этот процесс обусловлен самопроизвольным превращением одного из нуклонов ядра в нуклон другого рода, а именно: превращением либо нейтрона (n) в протон (p), либо протона в нейтрон. В первом случае из ядра вылетает электрон (е -) - происходит так называемый β - -распад. Во втором случае из ядра вылетает позитрон (е +) - происходит β + -распад. Вылетающие при Б.-р. электроны и позитроны носят общее название бета-частиц. Взаимные превращения нуклонов сопровождаются появлением ещё одной частицы - нейтрино (ν ) в случае β+-распада или антинейтрино А, равное общему числу нуклонов в ядре, не меняется, и ядропродукт представляет собой изобар исходного ядра, стоящий от него по соседству справа в периодической системе элементов. Наоборот, при β + -распаде число протонов уменьшается на единицу, а число нейтронов увеличивается на единицу и образуется изобар, стоящий по соседству слева от исходного ядра. Символически оба процесса Б.-р. записываются в следующем виде:

где -Z нейтронов.

Простейшим примером (β - -распада является превращение свободного нейтрона в протон с испусканием электрона и антинейтрино (период полураспада нейтрона ≈ 13 мин ):

Более сложный пример (β - -распада - распад тяжёлого изотопа водорода - трития, состоящего из двух нейтронов (n) и одного протона (p):

Очевидно,что этот процесс сводится к β - -распаду связанного (ядерного) нейтрона. В этом случае β-радиоактивное ядро трития превращается в ядро следующего в периодической таблице элемента - ядро лёгкого изотопа гелия 3 2 Не.

Примером β + -распада может служить распад изотопа углерода 11 С по следующей схеме:

Превращение протона в нейтрон внутри ядра может происходить и в результате захвата протоном одного из электронов с электронной оболочки атома. Чаще всего происходит захват электрона

Б.-р. наблюдается как у естественно-радиоактивных, так и у искусственно-радиоактивных изотопов. Для того чтобы ядро было неустойчиво по отношению к одному из типов β-превращения (т. е. могло испытать Б.-р.), сумма масс частиц в левой части уравнения реакции должна быть больше суммы масс продуктов превращения. Поэтому при Б.-р. происходит выделение энергии. Энергию Б.-р. Е β можно вычислить по этой разности масс, пользуясь соотношением Е = mc2, где с - скорость света в вакууме. В случае β-распада

где М - массы нейтральных атомов. В случае β+-распада нейтральный атом теряет один из электронов в своей оболочке, энергия Б.-р. равна:

где me - масса электрона.

Энергия Б.-р. распределяется между тремя частицами: электроном (или позитроном), антинейтрино (или нейтрино) и ядром; каждая из лёгких частиц может уносить практически любую энергию от 0 до E β т. е. их энергетические спектры являются сплошными. Лишь при К-захвате нейтрино уносит всегда одну и ту же энергию.

Итак, при β - -распаде масса исходного атома превышает массу конечного атома, а при β + -распаде это превышение составляет не менее двух электронных масс.

Исследование Б.-р. ядер неоднократно ставило учёных перед неожиданными загадками. После открытия радиоактивности явление Б.-р. долгое время рассматривалось как аргумент в пользу наличия в атомных ядрах электронов; это предположение оказалось в явном противоречии с квантовой механикой (см. Ядро атомное). Затем непостоянство энергии электронов, вылетающих при Б.-р., даже породило у некоторых физиков неверие в закон сохранения энергии, т.к. было известно, что в этом превращении участвуют ядра, находящиеся в состояниях с вполне определённой энергией. Максимальная энергия вылетающих из ядра электронов как раз равна разности энергий начального и конечного ядер. Но в таком случае было непонятно, куда исчезает энергия, если вылетающие электроны несут меньшую энергию. Предположение немецкого учёного В. Паули о существовании новой частицы - нейтрино - спасло не только закон сохранения энергии, но и другой важнейший закон физики - закон сохранения момента количества движения. Поскольку Спин ы (т. е. собственные моменты) нейтрона и протона равны 1 / 2 , то для сохранения спина в правой части уравнений Б.-р. может находиться лишь нечётное число частиц со спином 1 / 2 . В частности, при β - -распаде свободного нейтрона n → p + e - + ν только появление антинейтрино исключает нарушение закона сохранения момента количества движения.

Б.-р. имеет место у элементов всех частей периодической системы. Тенденция к β-превращению возникает вследствие наличия у ряда изотопов избытка нейтронов или протонов по сравнению с тем количеством, которое отвечает максимальной устойчивости. Т. о., тенденция к β + -распаду или К-захвату характерна для нейтронодефицитных изотопов, а тенденция к β - -распаду - для нейтроноизбыточных изотопов. Известно около 1500 β-радиоактивных изотопов всех элементов периодической системы, кроме самых тяжёлых (Z ≥ 102).

Энергия Б.-р. ныне известных изотопов лежит в пределах от

периоды полураспада заключены в широком интервале от 1,3 · 10 -2 сек (12 N) до Бета-распад 2 10 13 лет (природный радиоактивный изотоп 180 W).

В дальнейшем изучение Б.-р. неоднократно приводило физиков к крушению старых представлений. Было установлено, что Б.-р. управляют силы совершенно новой природы. Несмотря на длительный период, прошедший со времени открытия Б.-р., природа взаимодействия, обусловливающего Б.-р., исследована далеко не полностью. Это взаимодействие назвали «слабым», т.к. оно в 10 12 раз слабее ядерного и в 10 9 раз слабее электромагнитного (оно превосходит лишь гравитационное взаимодействие; см. Слабые взаимодействия). Слабое взаимодействие присуще всем элементарным частицам (См. Элементарные частицы) (кроме фотона). Прошло почти полвека, прежде чем физики обнаружили, что в Б.-р. может нарушаться симметрия между «правым» и «левым». Это несохранение пространственной чётности было приписано свойствам слабых взаимодействий.

Изучение Б.-р. имело и ещё одну важную сторону. Время жизни ядра относительно Б.-р. и форма спектра β-частиц зависят от тех состояний, в которых находятся внутри ядра исходный нуклон и нуклон-продукт. Поэтому изучение Б.-р., помимо информации о природе и свойствах слабых взаимодействий, значительно пополнило представления о структуре атомных ядер.

Вероятность Б.-р. существенно зависит от того, насколько близки друг к другу состояния нуклонов в начальном и конечном ядрах. Если состояние нуклона не меняется (нуклон как бы остаётся на прежнем месте), то вероятность максимальна и соответствующий переход начального состояния в конечное называется разрешённым. Такие переходы характерны для Б.-р. лёгких ядер. Лёгкие ядра содержат почти одинаковое число нейтронов и протонов. У более тяжёлых ядер число нейтронов больше числа протонов. Состояния нуклонов разного сорта существенно отличны между собой. Это затрудняет Б.-р.; появляются переходы, при которых Б.-р. происходит с малой вероятностью. Переход затрудняется также из-за необходимости изменения спина ядра. Такие переходы называются запрещёнными. Характер перехода сказывается и на форме энергетического спектра β-частиц.

Экспериментальное исследование энергетического распределения электронов, испускаемых β-радиоактивными ядрами (бета-спектра), производится с помощью Бета-спектрометр ов. Примеры β-спектров приведены на рис. 1 и рис. 2 .

Лит.: Альфа-, бета- и гамма-спектроскопия, под ред. К. Зигбана, пер. с англ., в. 4, М., 1969, гл. 22-24; Экспериментальная ядерная физика, под ред. Э. Сегре, пер. с англ., т. 3, М., 1961.

Е. М. Лейкин.

Бета-спектр нейтрона. На оси абсцисс отложена кинетич. энергия электронов Е в кэв , на оси ординат - число электронов N (Е) в относительных единицах (вертикальными чёрточками обозначены пределы ошибок измерений электронов с данной энергиией).


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Бета-распад" в других словарях:

    Бета распад, радиоактивные превращения атомных ядер, в процессе к рьхх ядра испускают электроны и антинейтрино (бета распад) либо позитроны и нейтрино (бета+ распад). Вылетающие при Б. р. электроны и позитроны носят общее назв. бета частиц. При… … Большой энциклопедический политехнический словарь

    Современная энциклопедия

    Бета-распад - (b распад), вид радиоактивности, при котором распадающееся ядро испускает электроны или позитроны. При электронном бета распаде (b) нейтрон (внутриядерный или свободный) превращается в протон с испусканием электрона и антинейтрино (смотри… … Иллюстрированный энциклопедический словарь

    Бета-распад - (β распад) радиоактивные превращения атомных ядер, в процессе которых ядра испускают электроны и антинейтрино (β распад) либо позитроны и нейтрино (β+ распад). Вылетающие при Б. р. электроны и позитроны носят общее название бета частиц (β частиц) … Российская энциклопедия по охране труда

    - (b распад). самопроизвольные (спонтанные) превращения нейтрона n в протон р и протона в нейтрон внутри ат. ядра (а также превращение в протон свободного нейтрона), сопровождающиеся испусканием эл на е или позитрона е+ и электронных антинейтрино… … Физическая энциклопедия

    Самопроизвольные превращения нейтрона в протон и протона в нейтрон внутри атомного ядра, а также превращение свободного нейтрона в протон, сопровождающееся испусканием электрона или позитрона и нейтрино или антинейтрино. двойной бета распад… … Термины атомной энергетики

    - (см. бета) радиоактивное превращение атомного ядра, при котором испускаются электрон и антинейтрино или позитрон, и нейтрино; при бета распаде электрический заряд атомного ядра изменяется на единицу, массовое число не меняется. Новый словарь… … Словарь иностранных слов русского языка

    бета-распад - бета лучи, бета распад, бета частицы. Первая часть произносится [бэта] … Словарь трудностей произношения и ударения в современном русском языке

    Сущ., кол во синонимов: 1 распад (28) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    Бета распад, бета распада … Орфографический словарь-справочник

    БЕТА-РАСПАД - (ß распад) радиоактивное превращение атомного ядра (слабое взаимодействие), при котором испускаются электрон и антинейтрино или позитрон и нейтрино; при Б. р. электрический заряд атомного ядра изменяется на единицу, массовое (см.) не меняется … Большая политехническая энциклопедия

Накопители тяжелых ионов открывают принципиально новые возможности в исследовании свойств экзотических ядер. В частности, они позволяют накапливать и в течение длительного времени использовать полностью ионизованные атомы – «голые» ядра. В результате становится возможным исследовать свойства атомных ядер, у которых нет электронного окружения и в которых отсутствует кулоновское воздействие внешней электронной оболочкис атомным ядром.

Рис. 3.2 Схема e-захвата в изотопе (слева) и полностью ионизованных атомах и (справа)

Распад на связанное состояние атома был впервые обнаружен в 1992 г. Наблюдался β - -распад полностью ионизованного атома на связанные атомные состояния . Ядро 163 Dy на N-Z диаграмме атомных ядер помечено черным цветом. Это означает, что оно является стабильным ядром. Действительно, входя в состав нейтрального атома, ядро 163 Dy стабильно. Его основное состояние (5/2 +) может заселятся в результате e-захвата из основного состояния (7/2 +) ядра 163 Ho. Ядро 163 Ho, окруженное электронной оболочкой,β - -радиоактивно и его период полураспада составляет ~10 4 лет. Однако это справедливо только если рассматривать ядро в окружении электронной оболочки. Для полностью ионизированных атомов картина принципиально другая. Теперь основное состояние ядра 163 Dy оказывается по энергии выше основного состояния ядра 163 Ho и открывается возможность для распада 163 Dy (рис. 3.2)

→ + e - + e . (3.8)

Образующийся в результате распада электрон может быть захвачен на вакантную К или L-оболочку иона . В результате распад (3.8) имеет вид

→ + e - + e (в связанном состоянии).

Энергии β-распадов на K и L-оболочки равны соответственно (50.3±1) кэВ и (1.7±1) кэВ. Для наблюдения распада на связанные состояния K- и L-оболочки в накопительном кольце ESR в GSI было накоплено 10 8 полностью ионизированных ядер . В течение времени накопления в результате β + -распада образовывались ядра (рис. 3.3).


Рис. 3.3. Динамика накопления ионов: а - ток накопленных в накопительном кольце ESR ионов Dy 66+ во время разных стадий эксперимента, β- интенсивности ионов Dy 66+ и Ho 67+ , измеренные внешним и внутренним позиционно-чувствительными детекторами соответственно

Так как ионы Ho 66+ имеют практически то же отношение M/q, что и ионы первичного пучка Dy 66+ , они накапливаются на одной и той же орбите. Время накопления составляло ~ 30 мин. Для того, чтобы измерить период полураспада ядра Dy 66+ , накопленный на орбите пучок было необходимо очистить от примеси ионов Ho 66+ . Для очистки пучка от ионов в камеру инжектировалась аргоновая газовая струя плотностью 6·10 12 атом/см 2 , диаметром 3 мм, которая пересекала накопленный пучок ионов в вертикальном направлении. За счет того, что ионыHo 66+ захватывали электроны, они выбывали с равновесной орбиты. Очистка пучка проходила в течение приблизительно 500 с. После чего газовая струя перекрывалась и в кольце продолжали циркулировать ионы Dy 66+ и вновь образовавшиеся (после выключения газовой струи) в результате распада ионы Ho 66+ . Продолжительность этого этапа менялась от 10 до 85 мин. Детектирование и идентификация Ho 66+ базировались на том, что Ho 66+ можно еще сильнее ионизировать. Для этого на последнем этапе в накопительное кольцо снова инжектировалась газовая струя. Происходило обдирание последнего электрона с иона 163 Ho 66+ и в результате получался ион 163 Ho 67+ . Рядом с газовой струей располагался позиционно-чувствительный детектор, которым регистрировались выбывающие из пучка ионы 163 Ho 67+ . На рис. 3.4 показана зависимость числа образующихся в результате β-распада ядер 163 Ho от времени накопления. На вставке показано пространственное разрешение позиционно-чувствительного детектора.
Таким образом, накопление в пучке 163 Dy ядер 163 Ho явилось доказательством возможности распада

→ + e - + e (в связанном состоянии).


Рис. 3.4. Отношение дочерних ионов 163 Ho 66+ к первичным 163 Dy 66+ в зависимости от времени накопления. На врезке пик 163 Ho 67+ , зарегистрированный внутренним детектором

Варьируя интервал времени между очисткой пучка от примеси Ho 66+ и временем регистрации вновь образующихся в пучке примеси ионов Ho 66+ , можно измерить период полураспада полностью ионизированного изотопа Dy 66+ . Оно оказалось равным ~0.1 года.
Аналогичный распад был обнаружен и для 187 Re 75+ . Полученный результат крайне важен для астрофизики. Дело в том, что нейтральные атомы 187 Re имеют период полураспада 4·10 10 лет и используются как радиоактивные часы. Период полураспада 187 Re 75+ составляет всего 33±2 года. Поэтому в астрофизические измерения необходимо вносить соответствующие поправки, т.к. в звездах 187 Re чаще всего находится в ионизированном состоянии.
Изучение свойств полностью ионизованных атомов открывает новое направление исследований экзотических свойств ядер, лишенных кулоновского воздействия внешней электронной оболочки.

Бе́та-распа́д (β -распад) - тип радиоактивного распада , обусловленный слабым взаимодействием и изменяющий заряд ядра на единицу, в соответствии с правилом радиоактивных смещений Содди и Фаянса без изменения массового числа . При этом распаде ядро излучает бета-частицу (электрон или позитрон), а также нейтральную частицу с полуцелым спином (электронное антинейтрино или электронное нейтрино)

Традиционно к бета-распаду относят распады двух видов:

  • ядро (или нейтрон) испускает электрон и антинейтрино - «бета-минус-распад» (β − ).
  • ядро испускает позитрон и нейтрино - «бета-плюс-распад» (β + ).

При электронном распаде возникает антинейтрино, при позитронном распаде - нейтрино. Это обусловлено фундаментальным законом сохранения лептонного заряда .

Кроме β − и β + -распадов, к бета-распадам относят также электронный захват , (К-захват) в котором ядро захватывает электрон из своей электронной оболочки и испускает электронное нейтрино. Нейтрино (антинейтрино), в отличие от электронов и позитронов, крайне слабо взаимодействует с веществом и уносят с собой часть доступной энергии распада.

Энциклопедичный YouTube

    1 / 5

    ✪ Виды распада

    ✪ Альфа- и Бета- распады

    ✪ Урок 463. Открытие естественной радиоактивности. Альфа-, бета- и гамма-излучение

    ✪ Радиоактивность Физика ЕГЭ ОГЭ Атомы альфа бетта распад

    ✪ Ядерная физика Альфа и бета распад

    Субтитры

    Все, что мы до сих пор обсуждали, изучая химию, основывалось на стабильности электронов, и на том, где они, скорее всего, находятся в устойчивых оболочках. Но если продолжить изучение атома, выяснится, что в атоме находятся и действуют не только электроны. Взаимодействия происходят в самом ядре, ему свойственна нестабильность, которую оно стремится ослабить. Это и станет темой нашего видеоурока. На самом деле, изучение этих механизмов не входит в программу по химии для первокурсников, но лишними эти знания точно не будут. Когда мы будем изучать сильные ядерные взаимодействия, квантовую физику и тому подобное, мы еще подробно рассмотрим, почему протоны, нейтроны и кварки, из которых состоят ядра атомов, взаимодействуют именно таким образом. А сейчас представим, каким образом ядро вообще может распадаться.. Начнем с пучка протонов. Я нарисую несколько. Это протоны, а тут будут нейтроны. Нарисую их каким-нибудь подходящим цветом. Серый цвет – то, что надо. Итак, вот они, мои нейтроны. Сколько у меня протонов? У меня 1, 2, 3, 4, 5, 6, 7, 8. Значит, будет 1, 2, 3, 4, 5, 6, 7, 8, 9 нейтронов. Допустим, это ядро атома. Это, кстати, самый первый ролик об атомном ядре. Вообще, нарисовать атом, на самом деле, очень трудно, ведь у него нет четко определенных границ. Электрон в любой момент времени может находиться где угодно. Но если говорить о месте нахождения электрона 90% времени, то им будет радиус или диаметр атома. Мы уже давно знаем, что ядро - это бесконечно малая часть объема той сферы, где электрон находится 90% времени. А из этого следует что практически все, что мы видим вокруг, это пустое пространство. Все это - пустое пространство. Я говорю об этом, потому что это бесконечно малое пятнышко, даже несмотря на то, что оно является очень малой долей объема атома, его масса составляет почти всю массу атома - это очень важно. Это не атомы, это не электроны. Мы проникаем в ядро. Оказывается, иногда ядро бывает нестабильно и стремится достичь более устойчивой конфигурации. Мы не будем углубляться в детали причин неустойчивости ядра. Но, просто скажу, что иногда оно испускает так, называемые альфа-частицы. Это явление называется альфа-распадом. Запишем. Альфа-распад. Ядро испускает альфа-частицу, звучит фантастично. Это просто совокупность нейтронов и протонов. А альфа-частица – это два нейтрона и два протона. Возможно, они чувствуют, что они здесь не помещаются, вот эти, например. И происходит эмиссия. Они покидают ядро. Рассмотрим, что происходит с атомом, когда случается что-то подобное. Возьмем случайный элемент, назовем его Е. У него есть P - протоны. Нарисую буквы таким же цветом, что и протоны. Итак, вот - протоны. Естественно, у элемента Е есть массовое число атома, равное сумме протонов и нейтронов. Нейтроны серые. Происходит альфа-распад, что же будет с этим элементом? Что же будет с этим элементом? Количество протонов уменьшается на два. Поэтому количество протонов составит р минус 2. И число нейтронов тоже уменьшается на два. Итак, здесь у нас р минус 2, плюс наши нейтроны минус 2, то есть, всего минус 4. Масса уменьшается на четыре, и прежний элемент превращается в новый. Помните, что элементы определяются количеством протонов. При альфа-распаде вы теряете два нейтрона и два протона, но именно протоны превращают этот элемент в другой. Если мы назовем этот элемент 1, что я и собираюсь сделать, то теперь у нас будет новый элемент, элемент 2. Смотрите внимательно. Происходит эмиссия чего-то, что имеет два протона, и два нейтрона. Поэтому его масса будет равна массе двух протонов и двух нейтронов. Что же это? Отделяется что-то, имеющее массу четыре. Что содержит два протона и два нейтрона? Сейчас у меня нет периодической системы элементов. Я забыл ее вырезать и вставить перед съемкой этого видеоролика. Но вы быстро найдете в периодической таблице элемент, имеющий два протона, и этот элемент – гелий. Его атомная масса действительно четыре. Действительно, при альфа-распаде происходит эмиссия именно ядра гелия. Это ядро гелия. Так как это ядро гелия, у него нет электронов, чтобы нейтрализовать заряд протонов, это ион. У него нет электронов. У него только два протона, поэтому он имеет заряд плюс 2. Подпишем заряд. Альфа-частица – это просто ион гелия, ион гелия с зарядом плюс 2, самопроизвольно испускаемый ядром для достижения более устойчивого состояния. Это один вид распада. Теперь другие.. Рисуем еще одно ядро. Нарисую нейтроны. Нарисую протоны. Иногда получается так, что нейтрон чувствует себя неуютно. Он каждый день смотрит на то, что делают протоны, и говорит, знаете, что? Почему-то, когда я прислушиваюсь к себе, я чувствую, что на самом деле должен быть протоном. Если бы я был протоном, все ядро было бы немного устойчивее. И что он делает, чтобы стать протоном? Помните, нейтрон имеет нейтральный заряд? Вот что он делает, он испускает электрон. Это кажется сумасшествием. Электроны в нейтронах и все такое. И я согласен с вами. Это сумасшествие. И однажды мы изучим все, что находится внутри ядра. А пока просто скажем, что нейтрон может испустить электрон. Что он и делает. Итак, вот электрон. Мы принимаем его массу за равную нулю.. На самом деле это не так, но мы говорим сейчас о единицах атомной массы. Если масса протона – один, то масса электрона в 1836 раз меньше. Поэтому мы принимаем его массу за ноль. Хоть это и не так. А его заряд – минус 1. Итак, вернемся к процессу. Нейтрон испускает электрон. Конечно, нейтрон не остается нейтральным, а превращается в протон. Это называется бета-распадом. Запишем этот вид. Бэта-распад. А бета-частица – на самом деле просто испускаемый электрон. Вернемся к нашему элементу. У него есть определенное количество протонов и нейтронов. Вместе они составляют массовое число. Что происходит, когда он подвергается бета-распаду? Изменяется ли количество протонов? Конечно, у нас на один протон больше, чем было, потому что один нейтрон превратился в протон. Количество протонов увеличилось на 1. Изменилось ли массовое число? Посмотрим. Количество нейтронов уменьшилось на один, а количество протонов увеличилось на один. Поэтому массовое число не изменилось. Оно по-прежнему составляет Р плюс N, то есть, масса остается неизменной, в отличие от ситуации с альфа-распадом, но сам элемент изменяется. Количество протонов изменяется. В результате бета-распада мы снова получаем новый элемент. Теперь другая ситуация. Допустим, один из этих протонов смотрит на нейтроны и говорит, знаете, что? Я вижу, как они живут. Мне это очень нравится. Думаю, мне было бы удобнее, а наша группа частиц внутри ядра была бы счастливее, если бы я тоже был нейтроном. Все мы находились бы в более устойчивом состоянии. И что он делает? У этого испытывающего неудобства протона есть возможность испустить позитрон, а не протон. Он испускает позитрон. А что это такое? Это частица, которая имеет точно такую же массу, как и электрон. То есть, его масса в 1836 раз меньше массы протона. Но здесь мы пишем просто ноль, потому что в единицах атомной массы она приближается к нулю. Но позитрон имеет положительный заряд. Немного путает то, что здесь все еще написано е. Когда я вижу е, я думаю, что это электрон. Но нет, эту частицу обозначают буквой е, потому что это частица того же типа, но, вместо отрицательного заряда, она имеет положительный заряд. Это позитрон. Подпишем. Начинает происходить что-то необычное с этими типами частиц и веществом, которые мы рассматриваем. Но это - факт. И если протон испускает эту частицу, то с ней практически уходит его положительный заряд, и этот протон превращается в нейтрон. Это называется эмиссией позитрона. Эмиссию позитрона представить довольно легко, В названии все сказано. Снова элемент Е, с определенным количеством протонов, и нейтронов. Каким должен быть этот новый элемент? Он теряет протон. P минус 1. Он превращается в нейтрон. То есть, количество P уменьшается на один. Количество N увеличивается на один. Поэтому масса целого атома не изменяется. Она составит P плюс N. Но у нас все еще должен получиться другой элемент, правильно? Когда происходит бета-распад, увеличивается количество протонов. Мы переместились вправо в периодической таблице, или увеличили, вы знаете, что я имею в виду. Когда происходит эмиссия позитрона, уменьшается количество протонов. Нужно это записать в обеих этих реакциях. Итак, это эмиссия позитрона, и остается один позитрон. А в нашем бета-распаде остается один электрон. Реакции записаны абсолютно одинаково. Вы знаете, что это электрон, потому что он имеет заряд минус 1. Вы знаете, что это позитрон, потому что он имеет заряд плюс 1. Остается один, последний тип распада, о котором вы должны знать. Но он не изменяет количество протонов или нейтронов в ядре. Он просто высвобождает огромное количество энергии, или, иногда, высокоэнергетический протон. Это явление называется гамма-распадом. Гамма-распад означает, что эти частицы меняют свою конфигурацию. Они немного сближаются. И сближаясь, выделяют энергию в виде электромагнитного излучения с очень маленькой длиной волны. По существу, можно называть это гамма- частицей или гамма-лучом. Это сверхвысокая энергия. Гамма-лучи очень опасны. Они могут вас убить. Все это была теория. Теперь решим пару задач и выясним, с каким типом распада мы имеем дело. Здесь у меня бериллий-7, где семь - это атомная масса. И я превращаю его в литий-7. Итак, что здесь происходит? Масса ядра бериллия остается неизменной, но количество протонов уменьшается с четырех до трех. Уменьшилось количество протонов бериллия. Общая масса не изменилась. Несомненно, это не альфа-распад. Альфа-распад, как вы знаете, это выделение гелия из ядра. Так что же выделяется? Выделяется положительный заряд, или позитрон. Здесь это показано с помощью уравнения. Это позитрон. Поэтому этот тип распада бериллия-7 до лития-7- это эмиссия позитрона. Все ясно. А теперь взглянем на следующий пример. Уран-238, распадающийся до тория-234. И мы видим, что атомная масса уменьшается на 4, и видим, что атомное число уменьшается, количество протонов уменьшается на 2. Вероятно, выделилось что-то, что имеет атомную массу четыре, и атомное число два, то есть, гелий. Значит это альфа-распад. Вот здесь – это альфа-частица. Это пример альфа-распада. Но тут не все так просто. Потому что, если из 92 протонов осталось 90 протонов, здесь осталось еще 92 электрона. Будет ли теперь заряд минус 2? И более того, гелий, который высвобождается, он же не имеет электронов. Это просто ядро гелия. Так будет ли заряд плюс 2? Задавая такой вопрос, вы будете абсолютно правы. Но на самом деле именно в момент распада у тория больше нет причин удерживать эти два электрона, поэтому эти два электрона исчезают, и торий опять становится нейтральным. А гелий очень быстро реагирует таким же образом. Ему очень нужны два электрона для устойчивости, поэтому он очень быстро захватывает два электрона и становится стабильным. Можно записать это любым способом. Рассмотрим еще один пример. Здесь у меня йод. Хорошо. Посмотрим, что происходит. Масса не изменяется. Протоны должны превратиться в нейтроны или нейтроны – превратиться в протоны. Мы видим, тут у меня 53 протона, а здесь - 54. Видимо, один нейтрон превратился в протон. Нейтрон, видимо, превратился в протон. А нейтрон превращается в протон, испуская электрон. И мы наблюдаем это во время этой реакции. Электрон высвободился. Значит, это бета-распад. Это бета-частица. Подписали. Действует та же логика. Подождите, вместо 53 стало 54 протона. Теперь, когда прибавился еще один протон, будет ли у меня положительный заряд? Да, будет. Но очень скоро – возможно, не именно эти электроны, вокруг вращается так много электронов – я захвачу электроны из какого-нибудь места, чтобы стать устойчивым, и снова обрету устойчивость. Но вы будете абсолютно правы, если зададите вопрос, не станет ли частица ионом на малую долю времени? Рассмотрим еще один пример. Радон-222 с атомным числом 86, который превращается в полоний -218, с атомным числом 84. Небольшое интересное отступление. Полоний назван так в честь Польши, потому что Мария Кюри, открывшая его, оттуда, в то время, примерно в конце 1800-х годов – Польша еще не существовала как отдельная страна. Ее территория была разделена между Пруссией, Россией и Австрией. И поляки очень хотели, чтобы люди знали – они – единый народ. Они сделали открытие, что, когда радон подвергается распаду, образуется этот элемент. И назвали его в честь своей родины, Польши. Это привилегия открытия новых элементов. Но вернемся к задаче. Итак, что произошло? Атомная масса уменьшилась на четыре. Атомное число уменьшилось на два. Еще раз повторю, видимо, высвободилась частица гелия. Ядро гелия имеет атомную массу четыре и атомное число два. Все ясно. Значит, это альфа-распад. Можно написать, что это ядро гелия. Оно не имеет электронов. Мы можем даже сразу сказать, что оно будет иметь отрицательный заряд, но затем оно его теряет. Subtitles by the Amara.org community

Механизм распада

В β − -распаде слабое взаимодействие превращает нейтрон в протон , при этом испускаются электрон и электронное антинейтрино :

n 0 → p + + e − + ν ¯ e {\displaystyle n^{0}\rightarrow p^{+}+e^{-}+{\bar {\nu }}_{e}} . p + → n 0 + e + + ν e . {\displaystyle p^{+}\rightarrow n^{0}+e^{+}+{\nu }_{e}.}

В отличие от β − -распада, β + -распад не может происходить вне ядра, поскольку масса свободного протона меньше массы нейтрона (распад мог бы идти только в том случае, если бы масса протона превосходила суммарную массу нейтрона, позитрона и нейтрино). Протон может распадаться по каналу β + -распада лишь внутри ядер, когда абсолютное значение энергии связи дочернего ядра больше энергии связи материнского ядра. Разность между двумя этими энергиями идёт на превращение протона в нейтрон, позитрон и нейтрино и на кинетическую энергию получившихся частиц. Энергетический баланс при позитронном распаде выглядит следующим образом: (M i − M f − 2m e)·c 2 = Q β , где m e - масса электрона. Как и в случае β − -распада, доступная энергия Q β распределяется между позитроном, нейтрино и ядром отдачи (на долю последнего приходится лишь малая часть); кинетическая энергия позитрона и нейтрино распределены непрерывно в пределах от 0 до Q β ; распад разрешён энергетически лишь при неотрицательном Q β .

При позитронном распаде дочерний атом возникает в виде отрицательного однозарядного иона, поскольку заряд ядра уменьшается на единицу. Один из возможных каналов позитронного распада - аннигиляция появившегося позитрона с одним из электронов оболочки.

Во всех случаях, когда β + -распад энергетически возможен (и протон является частью ядра, несущего электронные оболочки либо находящегося в плазме со свободными электронами), он сопровождается конкурирующим процессом электронного захвата , при котором электрон атома захватывается ядром с испусканием нейтрино:

p + + e − → n 0 + ν e . {\displaystyle p^{+}+e^{-}\rightarrow n^{0}+{\nu }_{e}.}

Но если разность масс начального и конечного атомов мала (меньше удвоенной массы электрона, то есть 1022 кэВ ), то электронный захват происходит, не сопровождаясь позитронным распадом; последний в этом случае запрещён законом сохранения энергии . В отличие от ранее рассмотренных электронного и позитронного бета-распада, в электронном захвате вся доступная энергия (кроме кинетической энергии ядра отдачи и энергии возбуждения оболочки E x ) уносится одной частицей - нейтрино. Поэтому нейтринный спектр здесь представляет собой не гладкое распределение, а моноэнергетическую линию вблизи Q β .

Когда протон и нейтрон являются частями атомного ядра , процессы бета-распада превращают один химический элемент в другой, соседний по таблице Менделеева . Например:

1 55 37 C s → 1 56 37 B a + e − + ν ¯ e {\displaystyle \mathrm {{}^{1}{}_{55}^{37}Cs} \rightarrow \mathrm {{}^{1}{}_{56}^{37}Ba} +e^{-}+{\bar {\nu }}_{e}} ( β − {\displaystyle \beta ^{-}} -распад, энергия распада 1175 кэВ ), 11 22 N a → 10 22 N e + e + + ν e {\displaystyle \mathrm {~_{11}^{22}Na} \rightarrow \mathrm {~_{10}^{22}Ne} +e^{+}+{\nu }_{e}} ( β + {\displaystyle \beta ^{+}} -распад), 11 22 N a + e − → 10 22 N e + ν e {\displaystyle \mathrm {~_{11}^{22}Na} +e^{-}\rightarrow \mathrm {~_{10}^{22}Ne} +{\nu }_{e}} (электронный захват).

Бета-распад не меняет число

Ядра большинства атомов – это довольно устойчивые образования.

Однако ядра атомов радиоактивных веществ в процессе радиоактивного распада самопроизвольно превращаются в ядра атомов других веществ. Так в 1903 году Резерфорд обнаружил, что помещенный в сосуд радий через некоторое время превратился в радон. А в сосуде дополнительно появился гелий.

Альфа-распад

При альфа-распаде излучается α-частица (ядро

атома гелия). Из вещества с количеством протонов Z и нейтронов N в атомном ядре оно превращается в вещество с количеством протонов Z-2 и количеством нейтронов N-2, атомной массой А-4. То есть происходит смещение образовавшегося элемента на две клетки назад в периодической системе.

Альфа-распад – это внутриядерный процесс . В составе тяжелого ядра за счет сложной картины сочетания ядерных и электростатических сил образуется самостоятельная α-частица, которая выталкивается кулоновскими силами гораздо активнее остальных нуклонов. При определенных условиях она может преодолеть силы ядерного взаимодействия и вылететь из ядра.

Бета-распад

При бета-распаде излучается электрон (β-частица). В результате распада одного нейтрона на протон, электрон и антинейтрино, состав ядра увеличивается на один протон, а электрон и антинейтрино излучаются вовне. Соответственно,
образовавшийся элемент смещается в периодической системе на одну клетку вперед.

Пример β-распада:


Бета-распад – это внутринуклонный процесс . Превращение претерпевает нейтрон. Существует также бета-плюс-распад или позитронный бета-распад. При позитронном распаде ядро испускает позитрон и нейтрино, а элемент смещается при этом на одну клетку назад по периодической таблице. Позитронный бета-распад обычно сопровождается электронным захватом.

Гамма-распад


Гамма-распад – это излучение гамма-квантов ядрами в возбужденном состоянии, при котором они обладают большой по сравнению с невозбужденным состоянием энергией. В возбужденное состояние ядра могут приходить при ядерных реакциях либо при радиоактивных


распадах других ядер. Большинство возбужденных состояний ядер имеют очень непродолжительное время жизни – менее наносекунды.

Существуют распады с эмиссией нейтрона, протона, кластерная радиоактивность и некоторые другие, очень редкие виды распадов. Но превалирующие виды радиоактивности это альфа, бета и гамма распад.

Таблица распадов

Тип радиоактивности

Изменение заряда ядра Z

Изменение массового числа А

Характер процесса

Вылет α-частицы – системы двух протонов и двух нейтронов, соединенных воедино

Взаимные превращения в ядре нейтрона () и протона ()

β – -распад

β + -распад

Электронный захват (е – -или К-захват)

И – электронное нейтрино и антинейтрино

Спонтанное деление

Z – (1/2)A

A – (1/2)A

Деление ядра обычно на два осколка, имеющих приблизительно равные массы и заряды

История изучения радиоактивного излучения.
Э. Резерфорд обнаружил две составляющие этого излучения: менее проникающую, названную α- излучением, и более проникающую, названную - излучением. Третья составляющая урановой радиации, самая проникающая из всех, была открыта позже, в 1900 году, Полем Виллардом и названа по аналогии с резерфордовским рядом γ-излучением. Резерфорд и его сотрудники показали, что радиоактивность связана с распад

ом атомов (значительно позже стало ясно, что речь идет о распаде атомных ядер), сопровождающимся выбросом из них определенного типа излучений. Этот вывод нанес сокрушительный удар по господствовавшей в физике и химии концепции неделимости атомов.
В последующих исследованиях Резерфорда было показано, что α-излучение представляет собой поток α-частиц , которые являются не чем иным, как ядрами изотопа гелия 4 Не, а

β-излучение состоит из электронов и γ-излучение является потоком высокочастотных электромагнитных квантов , испускаемых атомными ядрами при переходе из возбужденных в более низколежащие состояния.
β-распада ядер . Теория этого явления была создана лишь в 1933 году Энрико Ферми, который использовал гипотезу Вольфганга Паули о рождении в β-распаде нейтральной частицы, имеющей близкую к нулю массу покоя и названной нейтрино . Ферми обнаружил, что β-распад обусловлен новым типом взаимодействия частиц в природе - "слабым" взаимодействием и связан с процессами превращения в родительском ядре нейтрона в протон с испусканием электрона е - и антинейтрино (β - -распад), протона в нейтрон с испусканием позитрона е + и нейтрино ν (β + -распад), а также с захватом протоном атомного электрона и испусканием нейтрино ν (электронный захват).
Четвертый вид радиоактивности, открытый в России в 1940 году
молодыми физиками Г.Н. Флеровым и К.А. Петржаком, связан со спонтанным делением ядер, в процессе которого некоторые достаточно тяжелые ядра распадаются на два осколка с примерно равными массами.
Но и деление не исчерпало всех видов радиоактивных превращений атомных ядер. Начиная с 50-х годов физики методично приближались к открытию протонной радиоактивности ядер. Для того чтобы ядро, находящееся в основном состоянии, могло самопроизвольно испускать протон, необходимо, чтобы энергия отделения протона от ядра была положительной. Но таких ядер в земных условиях не существует, и их необходимо было создать искусственно. К получению таких ядер были очень близки российские физики в Дубне, но протонную радиоактивность открыли в 1982 году немецкие физики в Дармштадте, использовавшие самый мощный в мире ускоритель многозарядных ионов.
Наконец, в 1984 году независимые группы ученых в Англии и России открыли кластерную радиоактивность некоторых тяжелых ядер, самопроизвольно испускающих кластеры - атомные ядра с атомным весом от 14 до 34.

Стабильные атомные ядра изобаров имеют минимальную величину энергии, которая определяется его массой (см. рис. 2.2.1). Масса ядра с данным общим числом нуклонов определяется, в свою очередь, его протонно-нейтронным составом, поскольку массы протона и нейтрона не равны между собой. В этой связи, среди ядер изобаров должны существовать ядра с определенное соотношением между числом протонов и нейтронов (дорожка стабильности на рис. 1.1.2), которому отвечают ядра с наименьшей массой, а, следовательно, и полной энергией. Ядру изобара с любой другой конфигурацией нуклонного состава энергетически выгодно превращение в ядро с оптимальным соотношением между числом протонов и нейтронов. Выход на дорожку стабильности в принципе возможен, если ядро испускает избыточный протон или нейтрон. Но для отделения избыточного нуклона требуется энергия не меньше энергии связи нуклона в ядре, т.е. энергия материнского ядра должна быть больше энергии дочернего ядра и свободного нуклона на величину энергии связи нуклона в материнском ядре. Если же эта энергия меньше энергии связи избыточного нейтрона в ядре, то могут иметь место самопроизвольные изменения в составе ядер, обусловленные явлением b-распада – взаимопревращением внутри ядра нуклонов одного рода в другой (протона в нейтрон или наоборот). Направление процесса для ядра изобара определяется лишь тем, при каком соотношении между числом протонов и нейтронов ядро имеет наибольшую энергию связи, которой соответствует наименьшая масса ядра (см. рис. 2.2.1).

Бета-распад (b-распад) является спонтанным процессом преобразования ядра, в результате которого ядро изменяет свой заряд на ΔΖ = ±1, сохраняя при этом неименное число нуклонов А (массовое число). В некоторых случаях образуются свободные b-частицы (электрон β - или позитрон β + ) или происходит «захват» ядром электрона из электронной оболочки собственного атома. Свойства электрона и позитрона тождественны, за исключением знака электрического заряда. Потоки образующихся b- частиц образуют b-излучение .

β-Распад – самый распространенный вид радиоактивных превращений ядер в природе. В отличие от α-распада, который наблюдается исключительно у тяжелых ядер, β-распаду подвержены ядра практически во всей области значений массового числа А, начиная от единицы (свободный нейтрон) и заканчивая массовыми числами самых тяжелых ядер.

Энергия, выделяющаяся при β-распаде, опять же, в отличие от α-распада, лежит в довольно широком интервале значений от 0,02 МэВ прираспаде ядра трития 3 Н до 16,4 МэВ при распаде ядра 12 N.

Периоды полураспада β-активных ядер изменяются в очень широких пределах от 10 -2 с до 10 18 лет .


Известны три разновидности b-распада.



Поделитесь с друзьями или сохраните для себя:

Загрузка...